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Abstract

The Pontryagin-Thom construction states that framed bordism classes of framed
submanifolds of a certain smooth manifold are in bijection with smooth homotopy
classes of smooth maps of that manifold to a sphere. We give the proof of this
theorem in the first part of this thesis. The second and third parts generalise this
result to yield connections to homotopy theory and homology theory. First we omit
the reference to an embedding into a specific manifold through a stabilisation process
to obtain a correspondence to stable homotopy groups. Finally, we allow not only
framings but more general structures on our manifolds and bordisms leading to
general homology theories defined in terms of spectra.



Zusammenfassung

Die Pontryagin-Thom Konstruktion liefert eine Bijektion zwischen gerahmten Bor-
dismusklassen gerahmter Untermannigfaltigkeiten einer gegebenen Mannigfaltigkeit
und Homotopieklassen von Abbildungen dieser Mannigfaltigkeit in eine Sphäre. Im
ersten Teil dieser Arbeit beweisen wir diesen Satz. Im zweiten und dritten Teil verall-
gemeinern wir dieses Ergebnis dann, um Verbindungen zur Homotopie- und Homolo-
gietheorie herzustellen. Zunächst lösen wir uns durch einen Stabilisierungsprozess
von Untermannigfaltigkeiten und können Mannigfaltigkeiten unabhängig von einer
Einbettung betrachten. An dieser Stelle finden wir stabile Homotopiegruppen in
unserer Theorie wieder. Zuletzt verallgemeinern wir die zu Beginn betrachteten
Rahmungen und erlauben allgemeinere Strukturen auf unseren Mannigfaltigkeiten
und Bordismen. Wir beweisen einen Isomorphismus der Bordismusgruppen zu
verallgemeinerten Homologiegruppen.
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1. Introduction

1. Introduction

Motivation

The general idea of bordism theory is to consider manifolds up to boundary, i.e. to consider
manifolds up to the equivalence relation called bordism generated by two manifolds N1

and N2 being bordant if they are the common boundary of a higher-dimensional manifold
M . While this is easy to understand and visualise, it does not yield a very interesting
theory yet: Regarding the disjoint union

∐
as a sum operation, we see that with respect

to this structure, every element is of order two. Taking the disjoint union M
∐
M of any

manifold with itself, we obtain a null-bordant manifold (a manifold bordant to the empty
manifold) because ∂(M × [0, 1]) = M

∐
M . This algebraic structure is not diverse enough

to answer interesting questions in topology. So we need to enrich our theory by restricting
the bordisms we allow in order to obtain a more general theory.
We first take a very direct approach at defining the structure of a framing on a

submanifold and require bordisms to admit a framing compatible with that of the
boundary. This yields a remarkable result connecting differential topology and homotopy
theory.

While this result for framed bordisms is already very valuable by itself, it also motivates
considering other structures on submanifolds and bordisms than just framings. These
more general structures are defined in terms of the normal bundle of a submanifold of a
sphere. Although the use of normal bundles requires us to consider submanifolds of certain
manifolds, it is possible to stabilise these normal bundles to obtain a stable structure
on a manifold independent of any embedding. The main aim of this thesis is to prove
Thom’s Theorem, which states an isomorphism between bordism classes with respect to
some additional structure and generalised homology groups defined via spectra called
Thom Spectra arising from the stable structure on a manifold.

By manifold we shall mean an m-dimensional compact and smooth manifold with or
without boundary. A submanifold shall be an embedded submanifold.

Source material

The first part of my thesis is based on Topology from the differentiable viewpoint by John
W. Milnor [8] and a seminar taking place in the summer semester 2017 at KIT. In the
second part of my thesis I used Davis and Kirk’s Lecture notes in algebraic topology [3]
as well as chapter 3.3 from Lück’s Basic Introduction to Surgery Theory [7] to get an
overview of the topic and the necessary background knowledge, and then worked with a
wide rage of sources, most prominently Bröcker and tom Dieck’s Kobordismentheorie [1].

Acknowledgement

I want to thank my advisor Holger Kammeyer for making it possible for me to write
my Bachelor’s thesis without being in Karlsruhe most of the time and still being able to
advise me whenever I needed advice. It made me work very intensively by myself and
strengthen my own initiative and endurance. Whenever needed, I could always contact
him with questions or uncertainties.
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2. Framed Bordism and the Pontryagin-Thom Construction

2. Framed Bordism and the Pontryagin-Thom
Construction

In this first chapter we make several simplifications to understand the general concept of
bordism. We do not yet consider stable bordism but instead consider bordism within a
specified manifold. So we only consider bordisms between submanifolds Nn

1 , Nn
2 of Mm of

a specific dimension. While we will consider manifolds mapping to a specific manifold X
later, called manifolds in X, in order to compute generalised homology groups of several
manifolds, we leave out this additional condition throughout this chapter. By setting
X = pt this condition becomes trivial since every manifold has a unique mapping to
a point. The structure we require on our submanifolds Nn of Mm and bordisms is a
framing. A framing is a basis of the normal space of Nn inMm at each point of N , varying
continuously. In terms of the normal bundle this is a trivialisation of the normal bundle or
equivalently a reduction of the structure group of the normal bundle to the trivial group,
as will be explained in more detail later. So for some m-dimensional manifold and some n
we will investigate

Ω1
n,M(pt) =: Ωfr

n,M ,

the framed bordism classes of n-dimensional framed submanifolds of Mm.

The focus of this chapter will lie on proving the one-to-one correspondence between
smooth homotopy classes of smooth maps f : M → Sm−n, where M is an m-dimensional
compact, boundaryless manifold, and framed bordism classes of submanifolds of codi-
mension p := m− n in M . The precise terminology will be introduced later. However,
one can easily see that once one has understood the framed bordism classes of submani-
folds of codimension p of Sm, one knows the smooth homotopy classes of smooth maps
f : Sm → Sp and thus is very close to understanding πm(Sp), a very hard problem. For
specific m and p, this will be our first application of the theory.

Aim: Ωfr
n,Mm

1:1←→ [Mm, Sm−n]

This chapter uses [8] as its main source. All definitions, theorems and lemmata can be
found in chapter 7 of [8]. Only additional sources are mentioned explicitly.
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2. Framed Bordism and the Pontryagin-Thom Construction

2.1. The Bordism Relation

Let Nn
1 and Nn

2 be compact submanifolds of the manifold Mm with ∂Nn
1 = ∂Nn

2 =
∂Mm = ∅. The difference of dimensions m− n is called codimension of Nn

1 respectively
Nn

2 within Mm.

In this chapter all manifolds are considered submanifolds of Rk for some k ∈ N. By the
Whitney Embedding Theorem [A.1] this does not restrict the set of manifolds considered.
These embeddings into some Rk yield a metric on each manifold and a scalar product on
each tangent space.

Definition 2.1. Nn
1 is bordant to Nn

2 within Mm if for some ε > 0 the subset N1× [0, ε)∪
N2 × (1− ε, 1] of M × [0, 1] can be extended to a compact manifold X ⊂M × [0, 1] such
that ∂X = N1 × {0} ∪N2 × {1} and so that X ∩ (M × {0} ∪M × {1}) = ∂X.

Remark. 1. For X to have as boundary the n-dimensional manifold N1×{0}∪N2×{1},
X needs to have dimension n+ 1.

2. The right inclusionX∩(M×{0}∪M×{1}) ⊃ ∂X follows from ∂X = N1×{0}∪N2×
{1} ⊂ (M×{0}∪M×{1}), whereas the left inclusion X∩(M×{0}∪M×{1}) ⊂ ∂X
requires that X does not intersect M × {0} ∪M × {1} except at the points of ∂X,
i.e. at N1 respectively N2.

3. Bordism is an equivalence relation. For this we need that N1 × [0, ε) ⊂M × [0, 1]
and N2 × (1− ε, 1] ⊂M × [0, 1] are extended to a bordism X ⊂M × [0, 1] and not
only N1 × {0} and N2 × {1}. This ensures that two bordisms glued together yield
again a smooth manifold as indicated in the picture following Example 2.4.

Example 2.2. The simplest example of a bordism is N1 := M × {0}, N2 := M × {1} ⊂
M × [0, 1] with X = M × [0, 1] for any compact manifold without boundary M .

Example 2.3. Consider M = S1 as the unit circle in R2 and N1 = {p1}, N2 = {p2} as
two points on M . Then M × [0, 1] is a cylinder of radius 1 and length 1. The manifold
X can be taken as the image of a path γ : [0, 1] → M × [0, 1] from N1 ⊆ M × {0} to
N2 ⊂ M × {1} satisfying γ(t) = (p1, t) for 0 ≤ t < ε and γ(t) = (p2, t) for 1− ε < t ≤ 1
as indicated in the picture below:

M
p1

p2

M × {0} M × {1}
p1 p2γ

Example 2.4. Considering once more M = S1 with now three points N1 = {p1}, N2 =
{p2}, N3 = {p3} on the sphere, we can glue together two bordisms from N1 to N2 and
from N2 to N3 as in the following picture:

p1 p2

p3

γ γ′
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2. Framed Bordism and the Pontryagin-Thom Construction

2.2. Framings

Definition 2.5. A framing of a submanifold Nn ⊂Mm with codimension p := m− n is
a smooth function v : N → ((TN)⊥)p which assigns to each x ∈ N a basis

v(x) = (v1(x), . . . , vp(x))

of (TxN)⊥ ⊂ TxM – the space of normal vectors to N in M at x.
The pair (N, v) is called a framed submanifold of M.

M
p1

v(p1)

Remark. (TN)⊥ is well-defined, because we are considering N ⊂M ⊂ Rk.

Example 2.6. Not all submanifolds are framable: For example the 1-sphere S1 ⊂M as
a submanifold of the Möbius band M , embedded as indicated in the picture below [5]
cannot be framed. A function v : S1 → ((TS1)⊥) such that v(x) is a basis of (TxS

1)⊥ for
each x ∈ S1 cannot be continous, as “walking around” S1 once “flips” the orientation.

Remark. Note that for manifolds N ′ ⊂M ′ of dimensions n and m with boundary, even
for a boundary point x ∈ N ′, TxN ′ is an n-dimensional vector space and TxM

′ an m-
dimensional vector space [8, Ch. 2]. So a framing of a manifold with boundary can be
defined in exactly the same way as done above for a manifold without boundary.

Definition 2.7. Two n-dimensional framed submanifolds (N1, v) and (N2, w) are called
framed bordant within Mm if there exists a framing u : X → ((TX)⊥)m−n of a bordism
X ⊂M × [0, 1], such that

ui(x, t) = (vi(x), 0) for (x, t) ∈ N1 × [0, ε) ⊂ X,

and
ui(x, t) = (wi(x), 0) for (x, t) ∈ N2 × (1− ε, 1] ⊂ X.

We denote the set of framed bordism classes of n-dimensional framed submanifolds of
Mm by Ωfr

n,M .

Remark. 1. We require our framed bordism to be constant in an ε-interval around the
boundary to ensure that the composition of two framings is again a smooth function.
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2. Framed Bordism and the Pontryagin-Thom Construction

2. Framed bordism is an equivalence relation. The only issue is the smoothness of
the framing when concatenating two framed bordisms to show transitivity. This
however is ensured by the resulting framing being constant in an ε-neighbourhood
around the junction.

Example 2.8.

p1 p2

p3

2.3. The Pontryagin Manifold

Note. There is a naturally induced orientation on Sp: The standard orientation on Rp+1

induces an orientation on the closed unit (p+ 1)-ball Dp+1 ⊂ Rp+1. Then we can equip
Sp with the boundary orientation coming from the closed unit ball.

Consider any smooth map f : M → Sp from a compact m-dimensional manifold to the
p-sphere, where p ≤ m. Let y ∈ Sp be a regular value. Note that for p > m regular values
do not exist because Dxf : Rm ∼= TxM → TxS

p ∼= Rp cannot be surjective. For p ≤ m
such a regular value does exist because by Brown’s Corollary found in [8, Ch. 2], the set
of regular values of f : M → Sp is everywhere dense in Sp.

By the regular value theorem (or preimage theorem), X := f−1(y) is an (m − p)-
dimensional submanifold ofM . We obtain a framing of X through the following procedure:
Choose a positively oriented basis v = (v1, ..., vp) for the tangent space TySp. By

Lemma 2 in [8, Ch. 2], ker(Dxf : TxM → TyS
p) = TxX for each x ∈ X. Thus,

Dxf|(TxX)⊥ : (TxX)⊥
∼=−→ TyS

p is an isomorphism. So for each x ∈ X and each i ∈
{1, ..., p}, there exists exactly one wi(x) ∈ (TxX)⊥ that maps to vi(x) under Dxf . Then
w = (w1(x), . . . , wp(x)) =: f ∗v is a framing of X = f−1(y). Continuity and triviality at
the boundaries are easy to check.

This resulting framed manifold (f−1(y), f ∗v) will be called the Pontryagin manifold
associated with f .

Remark. Now consider any smooth map F : M ′ → Sp where M ′ is an (m+ 1)-dimensional
manifold with boundary and p ≤ m. Let y ∈ Sp be a regular value for both F and F|∂M ′ .
Then by [8, Ch. 2, Lemma 4], F−1(y) is a smooth (m− p+ 1)-dimensional manifold with
∂(F−1(y)) = F−1(y) ∩ ∂M ′. By [8, Ch. 2, Lemma 2] the above works just as well for
manifolds with boundary. Hence the Pontryagin manifold can also be constructed in this
setting. This will be important in the proof of two upcoming lemmata where we want to
use the Pontryagin manifold associated with a homotopy F : M × [0, 1]→ Sp.

Since we made several choices (we chose a regular value and a positively oriented basis),
“the Pontryagin manifold” is not yet well-defined. For this definition of “the Pontryagin
manifold” to be valid, we need to show that different choices of y and v above lead to the
“same” manifold. The classification we want to accomplish here is up to framed bordism.
We will show that all manifolds (f−1(y), f ∗v) corresponding to different choices of y and
v belong to a single framed bordism class. Once we have shown that, we can accept the
following definition:
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2. Framed Bordism and the Pontryagin-Thom Construction

Definition 2.9. The framed bordism class of (f−1(y), f ∗v) is called the Pontryagin
manifold associated with f .

The following theorem states what we need:

Theorem 2.10. If y′ is another regular value of f and v′ is any positively oriented basis
for Ty′Sp, then the framed manifold (f−1(y), f ∗v) is framed bordant to (f−1(y′), f ∗v′).

To simplify the proof of the above theorem, we split it into three lemmata.

Lemma 2.11. If v and v′ are two different positively oriented bases of TySp, then the
Pontryagin manifold (f−1(y), f ∗v) is framed bordant to (f−1(y), f ∗v′).

Proof. The positively oriented bases of TySp are precisely those that can be reached from
a positively oriented basis – such as v – through multiplication with a transformation
matrix of positive determinant. Thus we can identify the space of positively oriented
bases with the space of real matrices with positive determinant: GL+

p (R). This space is
path-connected [2] and thus so is the space of positively oriented bases. Hence we can
choose a smooth path u from v to v′. We can adjust this path at the end points such that
u|[0,ε) = v and u|(1−ε,0] = v′. Then (f−1(y) × [0, 1], u), meaning f−1(y) × t with framing
u(t) for t ∈ [0, 1], is a framed bordism for (f−1(y), f ∗v) and (f−1(y), f ∗v′).

Since the choice of framing v does not change the framed bordism class, we will often
omit the reference f ∗v and only speak of the framed manifold f−1(y).

Lemma 2.12. If y is a regular value of f : M → Sp and z is sufficiently close to y, then
f−1(z) is framed bordant to f−1(y).

Proof. Since M and Sp are compact manifolds, we can choose finite atlases ({Ui, ϕi})
and ({Vj, ψj}). We can now express f locally as fij : Rm ⊃ ϕi(Ui) → ψj(Vj) ⊂ Rp with
differential Df|TUi = Dfij given by the Jacobian of fij. The critical points of f are those
x ∈ Ui where rank(Dfij(x)) < p. This set of critical points in a chart Ui is closed: For
any regular point x ∈ Ui, the rows of Dfij(x) are linearly independent. Since the entries
of Dfij(x) vary smoothly with x ∈ Ui, there exists an open neighbourhood Ux ⊂ Ui of x
such that the rows of Dfij(y) are still linearly independent for y ∈ Ux and Dfij(y) thus
also has full rank. Hence the set of regular points in Ui is open and its complement, the
set of critical points in Ui, is closed. Since there are only finitely many charts, the set of
all critical points C in M is also closed and as a closed subset of a compact manifold it
is compact. Since f is continuous, the set f(C) of critical values in Sp is also compact,
thus closed. So we can choose an ε > 0 such that the ε-neighbourhood of y contains only
regular values. We now show that for any z in this ε-neighbourhood the lemma holds.
Let z ∈ Sp with ||z − y|| < ε. Choose an isotopy r : Sp × [0, 1]→ Sp such that

1. r1(y) = z,

2. rt = idSp for t ∈ [0, ε′), for some ε′ > 0,

3. rt = r1 for t ∈ (1− ε′, 1],

4. each r−1
t (z) lies on a great circle from y to z – i.e. a shortest path from y to z –

therefore has distance less than ε to y and is thus a regular value of f .

10



2. Framed Bordism and the Pontryagin-Thom Construction

This isotopy can be chosen as a family of rotations along a great arc from y to z.
Now define the homotopy F : M × [0, 1]→ Sp between f and r1 ◦ f as

F (x, t) := rt(f(x)).

For each t ∈ [0, 1], z is a regular value of rt. By the requirements above r−1
t (z) is a

regular value of f , so z is a regular value of rt ◦ f . For z to be a regular value of F , we
need each (x, t) ∈ F−1(z) to be a regular point of F . Since F|{(x,t)} = (rt ◦ f)|{x} and
x ∈ (rt ◦ f)−1(z), this is the case. Thus, z is a regular value of F . Following the procedure
above, F−1(z) ⊂M is a framed manifold providing a framed bordism between the framed
submanifolds (r0 ◦ f)−1(z) = f−1(z) ⊂ M × {0} and (r1 ◦ f)−1(z) = f−1(r−1

1 (z)) =
f−1(y) ⊂M × {1}.

Lemma 2.13. If f : M → Sp is smoothly homotopic to g : M → Sp and y is a regular
value for both, then f−1(y) is framed bordant to g−1(y).

Proof. Since f and g are smoothly homotopic, there is a smooth homotopyH : M×[0, 1]→
Sp from f to g. By walking through the homotopy a little faster we obtain a smooth
homotopy F : M × [0, 1]→ Sp with

F (x, t) = f(x) for 0 ≤ t < ε,

and
F (x, t) = g(x) for 1− ε < t ≤ 1.

As seen in the proof of the previous lemma there is an open neighborhood U ⊂ Sp

of y that only contains regular values of f and g. Since the regular values of F are
dense in Sp by the Theorem of Sard [A.5], we can choose a regular value z ∈ U of F .
Then f−1(y) is framed bordant to f−1(z) and g−1(y) is framed bordant to g−1(z) by
the previous lemma. So F−1(z) ⊂ M × [0, 1] is a framed manifold (by the Pontryagin
construction) and provides a framed bordism between f−1(z) and g−1(z): By choice of
the homotopy, F (f−1(z), t) = z for 0 ≤ t < ε and F (g−1(z), t) = z for 1− ε < t ≤ 1, so
f−1(z)× [0, ε)∪ g−1(z)× (1− ε, 1] ⊂ F−1(z). As the preimage of a closed set and subset of
a compact manifold, F−1(z) is compact and ∂F−1(z) = F−1(z)∩ (M ×{0} ∪M ×{1}) =
f−1(z)×{0}∪g−1(z)×{1} [4, Prop. 2.22]. D(x,t)F = Dxf for 0 ≤ t < ε and D(x,t)F = Dxg
for 1− ε < t ≤ 1, so the framing is also constant at the boundary.

Since framed bordism is an equivalence relation, f−1(y) is framed bordant to g−1(y) by
transitivity applied twice.

Proof of Theorem 2.10. Now given any two regular values y and z of f : M → Sp and any
positively oriented bases v for TySp and w for TzSp, we want to show that (f−1(y), v) is
framed bordant to (f−1(z), w). By Lemma 2.11 we do not need to consider v and w.
Choose a smooth one-parameter family of rotations rt : Sp → Sp such that r0 is the

identity and r1(y) = z. For example the rotation of Sp along a great arc through y and z.
This family of rotations is a smooth homotopy between r0 = id and r1 and hence rt ◦ f is
a smooth homotopy between f and r1 ◦ f . z is a regular value for both f and r1 ◦ f . By
Lemma 2.13, f−1(z) is framed bordant to (r1 ◦ f)−1(z) = f−1(r−1

1 (z)) = f−1(y).
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2. Framed Bordism and the Pontryagin-Thom Construction

2.4. The Pontryagin-Thom Isomorphism

Theorem 2.14 (Product Neighbourhood Theorem). Let Nn ⊂Mm be a framed subman-
ifold of the manifold M with codimension p and framing v. Assume N to be compact with
∂N = ∂M = ∅.
Then there is a neighbourhood V ⊂ M of N in M diffeomorphic to N × Rp via a

diffeomorphism φ : N × Rp
∼=−→ V so that

φ(x, 0) = x

for all x ∈ N and so that the standard basis of Rp corresponds to the normal frame
v(x) ⊂ (TxN)⊥ under each Dxφ, x ∈ N .
Conversely, every diffeomorphism φ : N × Rp → V with N ⊂ V ⊂ M , N a smooth

submanifold of M , yields a framing v of N in M .

Remark. The framing of the submanifold N is a necessary requirement, since product
neighbourhoods do not exist for arbitrary submanifolds. For example there is no neigh-
bourhood of S1 ⊂M diffeomorphic to S1 × Rp. Here S1 ⊂M is the 1-sphere embedded
into the Möbius band M as in Example 2.6.

Proof. “⇒”: We first consider the simplified case of M = Rn+p and then the general case
of M being any (n+ p)-dimensional boundaryless submanifold of some Rk.

Case 1: M = Rn+p.
Consider the map

φ : Nn × Rp → Rn+p, (x; t1, . . . , tp) 7→ x+ t1v1(x) + · · ·+ tpvp(x).

φ clearly satisfies φ(x, 0) = x for all x ∈ N . Furthermore φ has differential

D(x;0,...,0)φ =



1 0
. . .

0 1
v1(x)1 v2(x)1 . . . vp(x)1

v1(x)2 v2(x)2 . . . vp(x)2
...

... . . . ...
v1(x)p v2(x)p . . . vp(x)p



=



1 0
. . .

0 1

(v1(x)) (v2(x)) . . . (vp(x))


,

which is invertible for every (x; 0, . . . , 0) ∈ N × {0}. By the implicit function theorem,
there exists a neighbourhood A ⊂ N × Rp of (x; 0, . . . , 0) such that φ : A → φ(A) is a
diffeomorphism, where φ(A) is an open subset of Rn+p. Our aim is now to show that φ is
a diffeomorphism in some neighbourhood N ×Bε(0) ⊂ N × Rp of N × {0}.
We proceed by showing that φ|N×Bε(0) is injective for some ε > 0 by assuming the

contrary, i.e. that there exist (x, u) 6= (x′, u′) ∈ N ×Rp for arbitrarily small ||u|| and ||u′||
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2. Framed Bordism and the Pontryagin-Thom Construction

with φ(x, u) = φ(x′, u′). We can choose two sequences (xi, ui)i∈N, (x′i, u
′
i)i∈N such that

xi
i→∞−−−→ x0, ui

i→∞−−−→ 0, x′i
i→∞−−−→ x′0, u′i

i→∞−−−→ 0 and φ(xi, ui) = φ(x′i, u
′
i) for all i ∈ N. Since

N is compact and this is a closed condition on the sequences, we get that x0, x
′
0 ∈ N and

x0 = φ(x0, 0) = φ(x′0, 0) = x′0. This is a contradiction to φ being a diffeomorphism – so
in particular one-to-one – in a neighborhood of (x0, 0) = (x′0, 0). Thus φ is injective on
N ×Bε′(0) for some ε′ > 0 and φ : N ×Bε′(0)→ φ(N ×Bε′(0)) ⊂ Rn+p is bijective. Since
φ is a diffeomorphism in a neighbourhood of each (x; 0, . . . , 0) ∈ N × {0} and bijective
on Bε′(0), there is a U := Bε(0) with 0 < ε < ε′ such that φ : N × U → φ(V ) := V is a
diffeomorphism.
Furthermore, one can easily check that

ϕ : U → Rp, u 7→ u

1− ||u||2
ε2

is a diffeomorphism. Hence

φ := φ ◦ (id×ϕ−1) : N × Rp ∼=−→ V

is a diffeomorphism satisfying

φ(x, 0) = φ(x, 0) = x and

D(x;0,...,0)φ · en+i = vi(x) ∈ (TxN)⊥

for i ∈ {1, . . . , p}. This proves the first case.

Case 2: Let M be any boundaryless (n + p)-dimensional submanifold of Rk for some
k ≥ n+ p. The idea is to replace the straight lines tivi(x) we used in the case M = Rn+p

by geodesics in M .
For (x; t1, . . . , tp) ∈ N × Rp let

h(x; t1, . . . , tp) := t1v1(x) + · · ·+ tpvp(x) and w(x, t) :=
h(x, t)

||h(x, t)||
∈ (TxN)⊥ ⊂ TxM.

Let c be the unique arc-length parametrised geodesic on M with starting point x and
initial velocity w(x, t) (note that ||w(x, t)|| = 1). Let c(||h(x, t)||) be the endpoint of the
geodesic subsegment of c of length ||h(x, t)||. Then there exists some ε′′-neighbourhood
W := Bε′′(0) such that

φ : N ×W →M, φ(x; t1, . . . , tp) := c(||h(x, t)||)

is well-defined and smooth. For more details on geodesics see [6, Ch. 4]. From here we
can proceed as before:

D(x;0,...,0)φ =



1 0
. . .

0 1

(v1(x)) (v2(x)) . . . (vp(x))



13



2. Framed Bordism and the Pontryagin-Thom Construction

is invertible, so φ is a diffeomorphism φ : A→ φ(A) for a neighbourhood A ⊂ N × Rp of
each (x, 0) ∈ N × {0}. The same argument as above shows that φ is a diffeomorphism
φ : N × U → V ⊂ M in a neighbourhood U of N × {0} ⊂ N × Rp. Precomposing with
(id×ϕ−1) as above yields the desired diffeomorphism N × Rp

∼=−→ V .
“⇐”: This direction is a lot simpler. Given a diffeomorphism

φ : N × Rp → V ⊂M satisfying φ(x, 0) = x for x ∈ N,

the differential D(x;0,...,0)φ : T(x;0...0)(N × Rp)→M given by

D(x;0,...,0)φ =



1 0
. . .

0 1

(v1(x)) (v2(x)) . . . (vp(x))


is an isomorphism for each (x; 0, . . . , 0) ∈ T(x;0...0)(N × Rp) ∼= TxN × Rp. Since it is
the identity restricted to the tangent space of N , it maps Rp isomorphically onto the
orthogonal complement (TxN)⊥ ⊂ TxM . Thus

v : N → ((TN)⊥)p, x 7→ (v1(x), . . . , vp(x))

with
vi(x) := D(x;0,...,0)φ · en+i

defines a framing of N in M .

The product neighbourhood theorem gives us a very useful equivalent characterisation
of framed submanifolds N ⊂M as submanifolds equipped with a product neighbourhood
φ : N × Rp

∼=−→ V ⊂M .
The following theorem states the surjectivity of the Pontryagin-Thom isomorphism

[M,Sm−n]→ Ωfr
n,M and uses the product neighbourhood theorem to prove this.

Theorem 2.15. Any compact framed submanifold (N, v) of codimension p in M occurs
as a Pontryagin manifold for some smooth mapping f : M → Sp.

Proof. Let N ⊂M be a compact boundaryless framed submanifold of codimension p with
framing v. Choose a product representation φ : N×Rp → V ⊂M for some neighboorhood

V of N as in the previous theorem and let π : V
pr2 ◦φ−1

−−−−−→ Rp, i.e. π(φ(x, y)) = y.

V ⊂M

p1 p2
N

For x ∈ N , π(x) = pr2(x, 0) = 0 and

Dxπ · vi(x) = ei.

So the Pontryagin manifold N = π−1(0) carries the same framing v as we started off with.

14



2. Framed Bordism and the Pontryagin-Thom Construction

Now let ϕ : Rp → Sp be a smooth map with ϕ(x) = s0 for all x with ||x|| ≥ 1
that maps B1(0) diffeomorphically onto Sp \ {s0} by setting ϕ(x) := h−1( x

λ(||x||2)
), where

h : Sp \ {s0} → Rp is the stereographic projection and λ : R→ R is a smooth monotone
decreasing function with λ(t) > 0 for t < 1 and λ(t) = 0 for t ≥ 1. Here s0 is the basepoint
of Sp. This allows us to define f : M → Sp by

f(x) =

{
ϕ(π(x)) for x ∈ V,
s0 for x 6∈ V.

f is smooth and ϕ(0) is a regular value of f . The associated Pontryagin manifold
f−1(ϕ(0)) = π−1(0) = N is the framed manifold N .

The two things that are missing for a bijective map [M,Sp]→ Ωfr
p,M is the independence

of the Pontryagin construction of the homotopy class of a map f : M → Sp and the
injectivity of the construction. These two properties are stated in the following theorem:

Theorem 2.16. Two mappings f : M → Sp, g : M → Sp are smoothly homotopic if and
only if the associated Pontryagin manifolds are framed bordant.

To be able to prove this, we first need the following lemma:

Lemma 2.17. Let f, g : M → Sp be smooth maps with a common regular value y. Assume
that the framed manifolds (f−1(y), f ∗v) and (g−1(y), f ∗v) are framed bordant. Then f and
g are smoothly homotopic.

Proof. Set N := f−1(y). Suppose f coincides with g throughout some neighbourhood V
of N . Let h : Sp \ {y} → Rp be the stereographic projection. Because Rp is convex we
can define the smooth homotopy

H(x, t) :=

{
f(x), x ∈ V,
h−1(t · h(f(x)) + (1− t) · h(g(x))), x ∈M \ V

from f to g. Thus it suffices to deform f so that it coincides with g in some small
neighbourhood of N without changing f−1(y), so without mapping any new points onto y.

Let φ : N×Rp → V ⊂M be a product neighbourhood of N , where V is a neighbourhood
of N small enough so that f(V ) ⊂ Sp and g(V ) ⊂ Sp do not contain the antipode y of y.
Using the identifications given by the product neighbourhood φ and the stereographic
projection h : Sp \ {y} → Rp we can define

F, G : N × Rp φ−→ V
f|V , g|V−−−−→ f(V ), g(V ) ⊂ Sp \ {y} h−→ Rp

with
F−1(0) = (f ◦ φ)−1(y) = N × {0} = (g ◦ φ)−1(y) = G−1(0)

and
D(x,0)F = Dyh ◦Dxf ◦D(x,0)φ = prRp = Dyh ◦Dxg ◦D(x,0)φ = D(x,0)G

for all x ∈ N .

Our next aim is to find a constant c such that

〈F (x, u), u〉 > 0 and 〈G(x, u) · u〉 > 0

15
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for all x ∈ N and all u ∈ Rp with 0 < ||u|| < c. Then for all u with ||u|| < c, F (x, u) and
G(x, u) will lie in the same open half-space of Rp. In particular, the homotopy

(1− t)F (x, u) + tG(x, u)

between F and G will not map any new points to 0 for ||u|| < c.
By Taylor’s Theorem,

F (x, u) = F (x, 0) +D(x,0)F · ((x, u)− (x, 0)) + cf (x, u) · ||(x, 0)− (x, u)||2

= 0 + u+ cf (x, u) · ||u||2.

Set cf := lim sup
(x,u): ||u||<1

cf (x, u).

Then ||F (x, u)− u|| ≤ cf · ||u||2 for ||u|| < 1 and thus

|(F (x, u)− u) · u| ≤ cf ||u||3

⇒ |F (x, u) · u− ||u||2| ≤ cf ||u||3

⇒ F (x, u) · u ≥ ||u||2 − cf ||u||3 > 0

for 0 ≤ ||u|| ≤ min{c−1
f , 1}.

Similarly G(x, u) ·u ≥ ||u||2−cg||u3|| > 0 for 0 ≤ ||u|| ≤ min{c−1
g , 1}. Set c := min{cf , cg}.

Let λ : Rp → R be a smooth map with

λ(u) =

{
1 for ||u|| ≤ c

2
,

0 for ||u|| ≥ c.

Then H : N × Rp × I → Rp given by

Ht(x, u) = (1− λ(u)t)F (x, u) + λ(u)tG(x, u)

is a homotopy between F = H0 and a map H1 : N ×Rp → Rp that

• coincides with G for ||u|| < c
2
,

• coincides with F for ||u|| ≥ c,

• has no new zeros.

A corresponding deformation of f|V yields a homotopy H̃ from f|V to a map H̃1 : V → Sp

that

• coincides with g in a neighbourhood U of N in M ,

• coincides with f outside the neighbourhood of U in M ,

• has no new points mapping to y.

Then f is smoothly homotopic to H̃1 which in turn is smoothly homotopic to g. This
proves the lemma.

Proof of Theorem 2.16. "⇒": By Lemma 2.13, f−1(y) and g−1(y) are framed bordant.
"⇐": If (X, v) is a framed bordism between f−1(y) and g−1(y), then we can construct

a homotopy F : M × [0, 1] → Sp as in Theorem 2.15, whose Pontryagin manifold
(F−1(y), F ∗v) equals (X, v). Since F0 and f respectively F1 and g have the same Pontryagin
manifold, F0 ∼ f and F1 ∼ g by Lemma 2.17. Therefore f ∼ g by transitivity.
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2. Framed Bordism and the Pontryagin-Thom Construction

Example 2.18. We want to use the results from Theorems 2.16 and 2.17 to compute the
smooth homotopy classes of smooth maps Sn → Sn for some n ∈ N. Theorems 2.6 and 2.7
yield the one-to-one correspondence aimed at in the beginning between framed bordism
classes of framed n-dimensional submanifolds of Mm and smooth homotopy classes of
smooth maps M → Sm−n.

Remark. Using Theorem A.2 this result extends to homotopy classes of continuous maps
M → Sm−n, not requiring the maps or the homotopies to be smooth.

Let us compute Ωfr
0,Sn = {framed bordism classes of framed 0-dimensional submani-

folds of Sn}. A 0-dimensional submanifold of Sn is just a discrete set of points in Sn.
A framing of such a submanifold consists of a choice of basis v(x) ⊂ (TxN)⊥ ∼= TxS

n ∼= Rn.

Case n = 1:

p1

p2

p3

p4

Case n = 2:

p1

p2 p3

p4

A bordism between two 0-dimensional submanifolds N1, N2 ⊂ Sn is a 1-dimensional
submanifold of Sn × [0, 1] with ∂X = N1 × {0} ∪N2 × {1} and thus has to be a disjoint
union of connected 1-dimensional manifolds connecting two (different) points in N1, two
(different) points in N2 or connecting a point in N1 and a point in N2 as indicated in the
pictures above. Not all of these bordisms can be made into framed bordisms though. For
this to be possible the framings of the submanifolds at the respective points need to fulfill
specific requirements:

17



2. Framed Bordism and the Pontryagin-Thom Construction

• Two points x1, x
′
1 ∈ N1 or x2, x

′
2 ∈ N2 in the same submanifold can only be

connected by a framed bordism if the orientations of their framings are opposite,
i.e. if the change of basis from v(x1) ⊂ (Tx1N1) ∼= Rn to v(x′1) ⊂ (Tx′1N1) ∼= Rn or
w(x2) ⊂ (Tx2N1) ∼= Rn to w(x′2) ⊂ (Tx′2N2) ∼= Rn has negative determinant. In the
first example above p1 and p2 can be connected by a framed bordism while p1 and
p3 cannot.

• A point x1 ∈ N1 and a point x2 ∈ N2 can be connected by a framed bordism if the
framing v(x1) of N1 at x1 and the framing w(x2) of N2 carry the same orientation,
i.e. the change of basis has positive determinant. In the first example above p3 and
p4 can be connected by a framed bordism while p2 and p4 cannot.

So suppose N1 consists of a1 + b1 points, such that the framing of N1 is positively oriented
in a1 of those points and negatively oriented in the remaining b1. Analogously, N2 is
the disjoint union of a2 + b2 points, in a1 of which its framing is positively oriented, b2

points admitting a negatively oriented basis of their respective normal space. Connecting
all possible points within N1 and N2 by a framed bordism leaves a1 − b1 ∈ Z “positively
oriented points” in N1 and a2− b2 in N2. Then N1 and N2 are framed bordant if and only
if a1 − b1 = a2 − b2. Thus, Ωfr

0,Sn can be identified with the set of pairs (a, b) ∈ N0 × N0

modulo the equivalence relation (a1, b1) ∼ (a2, b2) ⇔ a1 − b1 = a2 − b2. Recalling the
Grothendieck contruction of the integers from the natural numbers one sees that this is
the set of integers Z. We can turn the set Ωfr

0,Sn into a group by setting the operation to be
disjoint union of framed submanifolds. This yields the additive operation we know from
Z given by (a1, b1) + (a2, b2) := (a1 + a2, b1 + b2) on the representatives of an equivalence
class.
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3. Stably Framed Bordism

3. Stably Framed Bordism

So far we have only considered submanifolds N of a specific manifold M . We want to
remove this restriction and consider arbitrary compact smooth manifolds N . Since we
still want to work with the normal bundle of N , we need to embed N into some manifold
and define a structure that is independent of this embedding. This is done by first inter-
preting framings in terms of the normal bundle of N embedded into some sphere Sk for
which an embedding is possible and then by “stabilising” this normal bundle. This stabil-
isation process involves suspensions and considering Sk ⊂ Sk+1 embedded into the equator.

The main sources of this chapter are the chapters 6 and 8 of [3]. Most definitions, theo-
rems and lemmata can be found similarly in [3]. Only additional sources are cited explicitly.

We no longer require all our manifolds to be embedded into some Rk. In Lemma 3.3 and
Lemma 3.5 we show that for manifolds embedded into some Rk, the definition of framings
given in Definition 2.5 is equivalent to the definition given here in terms of the normal
bundle.

3.1. Interpretation of Framings in Terms of the Normal Bundle

Definition 3.1. The normal bundle ν(N ↪→ M) of a submanifold j : N ↪→ M is the
quotient bundle ν(N ↪→ M) := (j∗(TM))/(TN). If M carries a Riemannian metric,
ν(N ↪→ M) can be considered to be the subbundle TM|N of the tangent bundle of M
consisting of the normal spaces (TxN)⊥ ⊂ TxM for each x ∈ N , as described in Section
2.2.

Definition 3.2. • A trivialisation of a vector bundle p : E → B with fibre Rn is a
collection of sections {si : B → E}1,...,n forming a basis of the fibre Eb = p−1(b)
pointwise for each b ∈ B.

Equivalently a trivialisation is a specific bundle isomorphism

E B × Rn

B B

p prB

id

.

• A framing of a vector bundle is a homotopy class of trivialisations, where two
trivialisation η and ξ are called homotopic if there is a continuous map F : E×[0, 1]→
B × Rn such that Ft is a trivialisation for every t ∈ [0, 1], F0 = η and F1 = ξ.

• A normal framing of a submanifold N ⊂M is a homotopy class of trivialisations of
the normal bundle ν(N ↪→M).

Lemma 3.3. Let Mm be embedded into Rk for some k ∈ N. A framed submanifold
(Nn, v = (v1, . . . , vm−n)) of M defines a normal framing of N in M .

Proof. For each x ∈ N , {v1(x), . . . , vm−n(x)} is a basis of (TxN)⊥ ⊂ TxM . For each
x ∈ N , define an isomorphism

(TxN)⊥
∼=−→ Rm−n
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by identifying vi(x) with the ith standard basis vector ei of Rm−n. By continuity of the
framing, this defines a continuous map

ν(N ↪→M)→ N × Rm−n,

an isomorphism in each fibre making the diagram

ν(N ↪→M) N × Rm−n

N Nid

commute.

Definition 3.4. Let Nn
1 and Nn

2 be two normally framed submanifolds of Mm. Then Nn
1

is normally framed bordant to Nn
2 within Mm if there is a normally framed submanifold

Xn+1 ⊂Mm× [0, 1] extending (Nn
1 × [0, ε))∪ (Nn

2 × (1− ε, 1]) with ∂Xn+1 = (Nn
1 ×{0})∪

(Nn
2 × {1}).

Lemma 3.5. Let Mm be embedded into Rk for some k ∈ N . The set of bordism classes
of n-dimensional framed submanifolds of M is in bijection with the set of bordism classes
of normally framed n-dimensional submanifolds of M .

Proof. Set p := m−n. Let (Nn, v = (v1, . . . , vp)) be a framed submanifold ofMm. Lemma
3.3 shows how to define a normal framing of Nn in Mm; denote it by φv.

Now let (Nn, φ) be a normally framed submanifold of Mm, that is φ : ν(Nn ↪→Mm)
∼=−→

Nn × Rp is a bundle isomorphism. Using this we define the following framing of Nn in
Mm:

vi(x) := (φ−1(x, ei)) ∈ (TxN
n)⊥ for x ∈ Nn.

Since φ is continuous, an isomorphism in each fibre and {e1, . . . , ep} forms a basis of Rp,
this defines a framing of N in M .
The two constructions are clearly inverse to one another.

In the following we will use the notation Ωfr
n,M for both the bordism classes of framed

submanifolds of M and the bordism classes of normally framed submanifolds of M . Now
that we are able to describe framings in terms of the normal bundle, we can look at how
to stabilise this normally framed bundle.

3.2. Suspension and the Freundenthal Theorem

Definition 3.6. Define K to be the category of compactly generated spaces with

• objects: Hausdorff spaces X for which a subset A ⊂ X is closed if and only if A∩C
is closed for every compact C ⊂ X;

• morphisms: continuous functions between compactly generated spaces.

Let K∗ be the category of compactly generated spaces with non-degenerate basepoint,
i.e., (X, x0) is an object of K∗ if x0 ↪→ X is a neighbourhood deformation retract [3, Ch. 6].
Morphisms in K∗ are basepoint preserving morphisms in K.
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By declaring any subset A ⊂ X to be closed if and only if A ∩ C is closed in X for all
compact C ⊂ X, any Hausdorff space X can be turned into a compactly generated space
k(X). This defines a functor

k : T2 → K
from the category of Hausdorff spaces T2 to the category K of compactly generated spaces.

Remark. The product of two compactly generated spaces X and Y in the category K is
given by k(X × Y ).
Instead of giving C(X, Y ) the compact-open topology generated by

U(K,W ) = {f ∈ C(X, Y )| f(K) ⊂ W},

where K is compact in X and W is open in Y , we topologise the function space as

Map(X, Y ) := K(C(X, Y )),

which is also a compactly generated space.

In the following, we will assume all topological spaces to be compactly generated. For
details on why we need this restriction see [3, Ch. 6].

Definition 3.7. A space X is called n-connected if

πk(X) = 0 for k ≤ n.

Definition 3.8. [Some operations on based spaces]
Let (X, x0) and (Y, y0) be based topological spaces.
The wedge product of X and Y is

X ∨ Y = (X × {y0}) ∪ ({x0} × Y ) ⊂ X × Y,

and the smash product is the quotient space

X ∧ Y = (X × Y )/(X ∨ Y ) = (X × Y )/((X × {y0}) ∪ ({x0} × Y )).

The reduced suspension of (X, x0) is the quotient space

ΣX = (X × I)/((X × {0, 1}) ∪ {x0} × I) = S1 ∧X

(see the following picture).

X × {1}

X × {0}

X
{x0} × I
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Lemma 3.9. The reduced suspension Σ is functorial with respect to based maps f : (X, x0)→
(Y, y0).

Proof. Let (X, x0), (Y, y0) and (Z, z0) be based spaces, f : (X, x0)→ (Y, y0) and g : (Y, y0)→
(Z, z0) based maps. Σ: Top∗ → Top∗ is defined as

ΣX = (X × I)/({(X × {0, 1}) ∪ (x0 × I))

on based spaces and as the quotient map of

f × id : X × I → Y × I

on based maps. It is well-defined because X×{0, 1} is mapped to Y ×{0, 1} and {x0}× I
is mapped to {y0} × I since f is based.
Functoriality of Σ:

• Σ(idX) : ΣX → ΣX is the quotient map of idX × idI : X × I → X × I by the same
quotient on the domain and codomain and thus equals idΣX .

• Σ(g ◦ f) : ΣX → ΣZ is the quotient map of (g ◦ f) × idI : X × I → Z × I by
(X×{0, 1})∪ (x0×I) and (Z×{0, 1})∪ (z0×I). Σ(g)◦Σ(f) is the concatenation of
the quotient maps of f×idI and g×idI . Since the collapsed part (Y ×{0, 1})∪(y0×I)
in the image of Σ(f) gets mapped to (Z × {0, 1}) ∪ (z0 × I) by Σ(g), Σ(g ◦ f) =
Σ(g) ◦ Σ(f).

Remark. In particular, the suspension defines a map

Σ: [X, Y ]0 → [ΣX,ΣY ]0,

where [X, Y ]0 denotes the based homotopy classes of based maps from X to Y .

Proposition 3.10. The reduced suspension ΣSn of the n-sphere is homeomorphic to
Sn+1.

Proof. The following picture indicates a homeomorphism:

Sn × {1}

Sn × {0}

Sn ∞ =
Sn

Sn+1

∞

Notation. Denote the homeomorphism by sn : ΣSn → Sn+1.

Corollary 3.11. The k-fold suspension Σk(Sn) is homeomorphic to Sk+n.

22



3. Stably Framed Bordism

By the above remark, the suspension defines a map

Σ: [Sk, Y ]0 → [Sk+1,ΣY ]0,

which turns out to be a homomorphism

Σ: πk(Y )→ πk+1(ΣY ).

for any based space Y . For Y = Sn we obtain

Σ: πk(S
n)→ πk+1(Sn+1).

One naturally considers Y ⊂ ΣY embedded as Y × {1
2
}. For the sphere this yields the

identification of Sk ⊂ ΣSk = Sk+1 with the equator as indicated in the picture above.
Using this we can interpret the suspension map Σ in terms of framed bordism:

If f : Sk → Sn is smooth, then Σ(f) : ΣSk = Sk+1 → Sn+1 = ΣSn is smooth away from
the basepoints, being the same map on the equator f = Σ(f)|Sk : Sk → Sn. If y ∈ Sn is
not the basepoint and a regular value for f , it is also a regular value for Σ(f). Hence
N := f−1(y) is a submanifold of Sk, y ∈ Sn+1 lies in the equator of Sn+1 and Σ(f) maps
the equator Sk of Sk+1 to the equator Sn of Sn+1. Thus (Σ(f))−1(y) = N ⊂ Sk ⊂ Sk+1.

By the Pontryagin-Thom construction N is a framed submanifold of Sk and Sk+1. Let
us look at how these two framings compare:

ν(N ↪→ Sk+1) = ν(N ↪→ Sk)⊕ ν(Sk ↪→ Sk+1)|N

= ν(N ↪→ Sk)⊕ εN and
ν(y ↪→ Sn+1) = ν(y ↪→ Sn)⊕ ε{y},

where εN = N × R and ε{y} = {y} × R are the trivial 1-dimensional bundles over N and
{y}.

As described above Σ(f)|Sk corresponds to f . Locally near the equator Sk ⊂ Sk+1, Σ(f)
has the form

f × id : Sk × (−ε, ε)→ Sn × (−ε, ε),
so the differential DxΣ(f) : TxS

k+1 → TyS
n+1, x ∈ V , maps ε{x} identically onto ε{y}.

This shows the following:

Theorem 3.12. Taking the Pontryagin manifold (Σ(f))−1(y) of a suspended map f : Sk →
Sn yields the same manifold (Σ(f))−1(y) = f−1(y) embedded into the equator Sk ⊂ Sk+1,
with framing corresponding to the direct sum of the old framing and the trivial 1-dimensional
framing.

Iterating this process we see:

Corollary 3.13. Taking the Pontryagin manifold of an l-fold suspended map

Σl(f) : Sk+l → Sn+l

yields the same manifold ((Σl(f)))−1(y) = f−1(y) embedded into the iterated equator
Sk ⊂ Sk+l with new framing

νnew = νold ⊕ εlV .
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Theorem 3.14. [Freundenthal suspension theorem]
Let X be an (n− 1)-connected space with n ≥ 2. Then the suspension homomorphism

Σ: πk(X)→ πk+1(ΣX)

is an isomorphism for k < 2n− 1 and an epimorphism for k = 2n− 1.

Proof. See [3, Ch. 10].

This allows us to make the following definition:

Definition 3.15. The kth stable homotopy group of a based space X is the colimit

πSk (X) := coliml→∞ πk+l(Σ
lX)

over the homomorphisms Σ: πk(Σ
lX)→ πk+1(Σl+1X).

The stable k-stem is
πSk := πSk (S0).

Corollary 3.16. If X is path-connected, then

πSk (X) = π2k(Σ
kX) = πk+l(Σ

lX) for l ≥ k.

For the stable k-stem,

πSk = π2k+2(Sk+2) = πk+l(S
l) for l ≥ k + 2.

Corollary 3.17. The Pontryagin-Thom construction defines an isomorphism

πSk
∼=−→ Ωfr

k,Sn

for any n ≥ 2k + 2.

Proof. Let n ≥ 2k + 2 and set l := n− k. Then by Section 2 and the previous corollary:

πSk
∼= πk+l(S

l) = [Sk+l, Sl]0 = [Sn, Sn−k]0 ∼= Ωfr
k,Sn .

Finally we want to remove the restriction of our manifolds being submanifolds of some
sphere. This can be done by defining the so called stable normal framing :

Definition 3.18. A stable normal framing of a manifold Nn, is an equivalence class
of trivialisations ν(Nn ↪→ Sk) ⊕ εl

∼=−→ N × Rk−n+l corresponding to some embedding
ik : N ↪→ Sk into a sphere, subject to the following equivalence relation:

(ik1 : N ↪→ Sk1 , ν ⊕ εl1 ∼= N × Rk1−n+l1) ∼ (ik2 : N ↪→ Sk2 , ν ⊕ εl2 ∼= N × Rk2−n+l2) if
there is some K greater that k1 and k2 such that the direct sum trivialisations

ν ⊕ εl1 ⊕ εK−k1−l1 ∼= εk1−n+l1 ⊕ εK−k1−l1 = εK−n

and
ν ⊕ εl2 ⊕ εK−k2−l2 ∼= εk2−n+l2 ⊕ εK−k2−l2 = εK−n

are homotopic.
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3. Stably Framed Bordism

Corollary 3.19. The stable k-stem πSk is isomorphic to the stably normally framed bordism
classes of stably normally framed k-dimensional smooth, oriented compact manifolds
without boundary.

We have now given a description of the stable k-stem πSk in terms of stably framed
bordism. The next step is to express πSk (X) in terms of bordism. The structure we need
to add is to consider only manifolds in X, meaning manifolds N with a specified mapping
g : N → X to X. Then we can define stably framed bordism in X:

Definition 3.20. Let (Nn
i , γi)i∈{1,2} be two stably framed manifolds and gi : Ni → X,

i ∈ {1, 2} continuous maps. Then (N0, γ0, g0) is called stably framed bordant to (N1, γ1, g1)
in X if there is a stably framed bordism (W,Γ) between (N0, γ0) and (N1, γ1) and a map
G : W → X restricting to g0 and g1 on N0 repectively N1. We say that (W,Γ, G) restricts
to (N0

∐
N1, γ0

∐
γ1, g0

∐
g1).

Notation. Set X+ := X
∐
{∞} to be the disjoint union of X and a point,∞ being the new

basepoint of X+. Let Ωfr
n (X) denote the stably framed bordism classes of n-dimensional

stably framed manifolds in X.

Since every manifold maps uniquely to a point and S0 = pt+, the previous corollary
can be restated as:

Ωfr
n (pt) = πSn (pt+).

The natural next step is to prove

Theorem 3.21.
Ωfr
n (X) = πSn (X+).

However, we will not prove this here, but prove an even more general version in the
next chapter.
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4. General Bordism Theories

4. General Bordism Theories

In this section we describe arbitrary bordism theories that lead to generalised homology
theories. These bordism theories are more general than the stably framed bordisms in a
manifold X we studied above because we allow more general structures than just framings.
We will still consider manifolds in some specified manifold X but this time carrying some
different, more general, stable structure on the stable normal bundle. This structure
will be given by a sequence of groups and homormorphisms, called G-structure. The
generalised homology theories arise from so called spectra, which we will define next.

The main sources of this chapter are chapter 8 of [3] and chapter 3 of [1]. Only additional
sources are given explicitely.

4.1. Spectra

Definition 4.1. A spectrum is a sequence of pairs K = {Kn, kn} of pointed topological
spaces Kn and pointed continuous maps

kn : ΣKn = S1 ∧Kn → Kn+1,

where ΣKn denotes the reduced suspension of Kn.

Example 4.2. [Suspension spectrum]
Let X be a pointed topological space. Set

Kn := {pt} for n < 0 and Kn := ΣnX = Sn ∧X for n ≥ 0

with
kn : ΣKn = Σ(Sn ∧X) = ΣSn ∧X sn∧idX−−−−→ Sn+1 ∧X = Kn+1.

Then (Kn, kn) is a spectrum.
For X = pt+, Σnpt+ = Sn, so (Kn, kn) = (Sn, sn : ΣSn → Sn+1). This spectrum is

called the sphere spectrum.

Using the identification ΣnX = Sn ∧X, the definition of stable homotopy groups can
be rewritten as

πSn (X) = coliml→∞ πn+l(S
l ∧X),

where the colimit is taken over the composite homomorphisms

πn+l(S
l ∧X)

Σ−→ πn+l+1(Σ(Sl ∧X))
kl−→ Sl+1 ∧X.

Example 4.3. [Eilenberg-MacLane spectrum]
Let π be an abelian group. An Eilenberg-MacLane space of type K(π, n) is a CW-

complex K(π, n) such that πn(K(π, n)) = π and πk(K(π, n)) = 0 for all k 6= n. In the
case n = 1, π may be non-abelian and in the case n = 0, we think of K(π, n) with the
discrete topology. Eilenberg-MacLane spaces exist.

The Eilenberg-MacLane spectrum for an abelian group π consists of the spaces K(π, n)
and inclusions of subcomplexes kn : ΣK(π, n)→ K(π, n+ 1) obtained by attaching cells
to ΣK(π, n). This gives us the Eilenberg-MacLane spectrum

K(π) = {K(π, n), kn}.
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4. General Bordism Theories

Taking π = Z, the Eilenberg-MacLane spectrum can be used to define ordinary homology
and cohomology [3]:

Hn(X;Z) = coliml→∞ πn+l(X+ ∧K(Z, l)),
Hn(X;Z) = coliml→∞[ΣlX+, K(Z, n+ l)]0.

This motivates the following definition of homology with respect to any spectrum, which
can be done analogously for cohomology.

Definition 4.4. Let K = {Kn, kn} be a spectrum. Define the

• nth (unreduced) homology with coefficients in K to be the functor

Hn : Top→ Ab, Hn(X;K) = coliml→∞ πn+l(X+ ∧Kl),

where the colimit is taken over the homomorphisms

ml : πn+l(X+ ∧Kl)
Σ−→ πn+l+1(Σ(X+ ∧Kl))→ πn+l+1(X+ ∧ ΣKl)

id∧kl−−−→ X+ ∧Kl+1.

• nth reduced homology with coefficients in K to be the functor

H̃n : Top∗ → Ab, H̃n(X;K) = coliml→∞ πn+l(X ∧Kl),

where the colimit is taken over the homomorphisms

ml : πn+l(X ∧Kl)
Σ−→ πn+l+1(Σ(X ∧Kl))→ πn+l+1(X ∧ ΣKl)

id∧kl−−−→ X ∧Kl+1.

4.2. G-structure

Let Mk ↪→ Sk+n be a submanifold of codimension n and G→ O(n) a continuous group
homomorphism from a topological group G to the orthogonal group O(n). A topological
group is a Hausdorff space G together with a group structure such that both ∗ : G×G→ G
and −1 : G→ G are continuous.
For each topological group G let

EG

BG

P

denote the universal principal G-bundle. Then, up to isomorphism, any principal G-bundle
over a paracompact space B arises as the pullback of EG→ BG. The space BG is called
classifying space for G and the map c along which the pullback is taken:

E EG

B BG

P

c

is called classifying map for the principal G-bundle E → B. For details on classifying
spaces and universal bundles see the appendix or [1, 3].
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Note. Using the Gram-Schmidt orthonogalisation process it can be shown that the
orthogonal group O(n) is a strong deformation retract of the general linear group GLn(R).
This implies that the isomorphism classes of n-dimensional vector bundles stand in
bijection with the isomorphism classes of Rn-bundles with structure group O(n). Since an
Rn-bundle with structure group O(n) carries a metric, we can henceforth assume all our
Rn-bundles to have structure group O(n) and carry a metric.

Definition 4.5. A (normal) G-structure on Mk ↪→ Sk+l is a pullback square

ν(Mk ↪→ Sk+l) EG×G Rl

Mk BG

γ

c

,

where EG×G Rl → BG is the Rl-fibre bundle associated with the principal G-bundle.

Now let G = {Gl, gl, il} be a sequence of topological groups with continuous homomor-
phisms

il : Gl → Gl+1, gl : Gl → O(l)

such that for each l the following diagram commutes:

Gl Gl+1

O(l) O(l + 1)

il

gl gl+1

incl.

where incl. : O(l)→ O(l + 1), A 7→
(
A 0
0 1

)
.

Definition 4.6. A (normal) stable G-structure on Mk consists of a Gl-structure on
Mk ↪→ Sk+l, a Gl+1-structure on Mk ↪→ Sk+l+1, and so forth, such that the following
diagram commutes for every l ≥ l0 for some l0 ∈ N:

ν(Mk ↪→ Sk+l) EGl ×Gl Rl

Mk BGl

ν(Mk ↪→ Sk+l+1) EGl+1 ×Gl+1
Rl+1

Mk BGl+1

γl

id⊕εM

=

cl

γl+1

cl+1

The vertical maps EGl ×Gl Rl → EGl+1 ×Gl+1
Rl and BGl → BGl+1 are induced by il

and gl.

Definition 4.7. Given a G-structure G = {Gl, gl, il}, define the kth G-bordism group
ΩG
k (X) of a manifold X to be the G-bordism classes of closed (compact and boundaryless)

k-dimensional manifolds (M, f) in X with stable G-structure γ on the normal bundle of
an embedding j : Mk ↪→ Sk+l in a sphere.
An element [Mk, f, γ] ∈ ΩG

k (X) is represented by a triple (Mk, f, γ) with

28



4. General Bordism Theories

• Mk a k-dimensional closed manifold,

• f : Mk → X a continuous map,

• γ : ν(Mk ↪→ Sk+l) → EGl ×Gl Rl a Gl-structure on the normal bundle ν(Mk ↪→
Sk+l).

G-bordism is the equivalence relation generated by

• (Mk ↪→ Sk+l, f, γ) ∼ (Mk ↪→ Sk+l+1, f, γ′) if γ and γ′ fit into a commutative
diagram as in Definition 4.6;

• (Mk
0 ↪→ Sk+l, f0, γ0) ∼ (Mk

1 ↪→ Sk+l, f1, γ1) if there is a compact submanifold
W k+1 ⊂ Sk+l × I, a map F : W k+1 → X and a stable G-structure Γ on ν(W k+1 ↪→
Sk+l × I) such that

(∂W k+1, F|∂Wk+1 ,Γ|∂Wk+1) = (Mk
0

∐
Mk

1 , f0

∐
f1, γ0

∐
γ1).

Examples of G-structures:

Example 4.8. [Empty structure]
The most basic example of a stable G-structure on a manifold Mk is requiring no

structure in addition to the orthogonal structure we already have on normal bundles. This
means that all groups Gl are simply the orthogonal groups O(l) with maps gl = idO(l) and
il : O(l) ↪→ O(l + 1) the inclusions of a matrix A ∈ O(l) into the top left corner as(

A 0
0 1

)
∈ O(l + 1).

Example 4.9. [Framing]
For a stably framed normal bundle, we require our normal bundles to be stably trivial.

This corresponds to the reduction of the structure groups of the normal bundles to the
trivial group. In terms of a G-structure, this is expressed by

Gl = 1, gl : 1 ↪→ O(l), il = id .

Example 4.10. [Orientation]
An orientation is weaker than a framing but stronger than the empty structure. In

addition to the orthogonal structure we require that the orientation of the normal bundle
be preserved under transition functions. This corresponds to the reduction of the structure
group to the special orthogonal group:

Gl = SO(l), gl : SO(l) ↪→ O(l), il : SO(l) ↪→ SO(l + 1), A 7→
(
A 0
0 1

)
.

4.3. Thom Space

Definition 4.11. Given a vector bundle p : E → B, define the disc and sphere bundle of
p to be

• D(p) : D(E)→ B, x 7→ p(x) with D(E) = {x ∈ E | ||x|| ≤ 1} ⊂ E, respectively

• S(p) : S(E)→ B, x 7→ p(x) with S(E) = {x ∈ E | ||x|| = 1} ⊂ D(E) ⊂ E.
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4. General Bordism Theories

Define the Thom space of p to be the quotient space

Th(E) := D(E)/S(E).

Remark. For a compact base space, the Thom space is homeomorphic to the one-point
compactification of the total space:

φ : D(E) \ S(E)→ E, x 7→ x√
1− ||x||2

is a diffeomorphism fiberwise and a homeomorphism globally. The one-point compactifi-
cation of D(E) \ S(E) is homeomorphic to D(E)/S(E). So

D(E)/S(E) ∼= (D(E) \ S(E))c ∼= Ec,

where Xc denotes the one-point compactification of a locally compact topological space
X.

Note that in the case of a compact base space, the total space is locally compact and so
its one-point compactification is compact.
Remark. The 0-section s : B → E, b 7→ 0b ∈ p−1(b) ⊂ D(E) \ S(E) ⊂ E defines an
embedding of B into the Thom space Th(E) = D(E)/S(E).
Let

ε(B) := ε : B × R prB−−→ B

denote the 1-dim trivial vector bundle B. More generally, let

εk(B) := εk : B × Rk prB−−→ B

denote the k-dim trivial vector bundle over B.

Lemma 4.12. For a vector bundle p : E → B, the Thom space Th(E ⊕ εk) is homeomor-
phic to the k-fold reduced suspension Σk(Th(E)).

Proof. Let ϕ : Dn+1 → Dn × I be an O(n)-equivariant homeomorphism. It induces a
homeomorphism

D(E ⊕ ε)→ D(E)× I, (v, x) 7→ ϕ(v, x),

which in turn induces

Th(E ⊕ ε) = (D(E ⊕ ε))/(S(E ⊕ ε))→ (D(E)× I)/((S(E)× I ∪D(E)× {0, 1}))
= Σ((D(E))/(S(E)))

= Σ(Th(E)).

Iterating this process we see that for any k ∈ N, Th(E ⊕ εk) = Σk(Th(E)).

Lemma 4.13. A vector bundle map

E E ′

B B′

f̃

f

which is a metric-preserving isomorphism in each fibre induces a map of Thom spaces

Th(E)→ Th(E ′).
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Proof. Because f̃ : E → E ′ and f : B → B′ are metric preserving, they induce f̃|D(E) : D(E)→
D(E ′) and f̃|S(E) : S(E)→ S(E ′). Thus

Th(f) : (D(E))/(S(E))→ (D(E ′))/(S(E ′)), [x] 7→ [f̃(x)]

is well-defined.

4.4. Thom Spectrum

Now let a G-structure {Gl, gl, il} be given. Recall that the Gl are topological groups and
gl and il are continuous homomorphisms

il : Gl → Gl+1, gl : Gl → O(l)

such that for each l the following diagram commutes:

Gl Gl+1

O(l) O(l + 1)

il

gl gl+1

incl.

.

The homomorphism gl : Gl → O(l) ⊂ GLl(R) induces an action of Gl on Rl, so we can
form the associated Rl-bundle with structure group Gl over BGl:

Vl := EGl ×Gl Rl

BGl

Ql
.

Thanks to the homomorphism gl : Gl → O(l) we can also regard Vl → BGl as an Rl-
bundle with structure group O(l). Thus, Vl

Ql−→ BGl carries a metric, and the Thom
space MGl := Th(Vl) = (D(Vl))/(S(Vl)) is defined. Functoriality of the universal bundles
EGl → BGl induces bundle maps

EGl EGn+1

BGl BGl+1

Eil

Pl Pl+1

Bil

which extend to

EGl ×Gl Rl = Vl Vl+1 = EGl+1 ×Gl+1
Rl+1

BGl BGl+1

V il

Ql Ql+1

Bil

,

where V il : Vl → Vl+1 is a linear injection on each fibre.
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Theorem 4.14. For a G-structure G = {Gl, gl, il} and the bundles Ql : Vl → BGl, the
fiberwise injection Vl → Vl+1 described above extends to a metric preserving bundle map

Vl ⊕ ε Vl+1

BGl BGl+1

which is an isomorphism in each fibre and hence induces a map of Thom spaces

Th(Vl ⊕ ε) = Σ(Th(Vl)) = Σ(MGl)→MGl+1 = Th(Vl+1)

denoted by
kl : Σ(MGl)→MGl+1.

Thus, MG = {MGl, kl} is a spectrum, called the Thom spectrum of G.

Proof. Consider the following pullback square:

γ∗l (Vl+1) Vl+1

BGl BGl+1
Bil:=γl

.

Recalling the above commutative square induced by il on Vl and BGl and using the
universal property of pullbacks, we obtain a bundle map φ : Vl → γ∗l (Vl+1) that fits into
the following commutative diagram:

Vl

γ∗l (Vl+1) Vl+1

BGl BGl+1

V il

Ql

φ

γl

Ql+1 Ql+1

Bil=:γl

.

Since V il is a linear injection in each fibre and γl is an isomorphism in each fibre, φ is
also a linear injection in each fibre and thus

Vl φ(Vl)

BGl BGl

φ

Ql Ql+1|φ(Vl

id

is an isomorphism of vector bundles.
Set ξ to be the orthogonal complement of φ(Vl) in γ∗l (Vl+1). Then γ∗l (Vl+1) = φ(Vl)⊕ ξ,

where ξ : E(ξ)→ BGl is a 1-dimensional Rl-bundle. We now want to understand why ξ
is the trivial bundle:

Recall that Vl = EGl ×Gl Rl, where Gl acts on Rl via gl : Gl → O(l); similarly for Vl+1.
Because

Gl Gl+1

O(l) O(l + 1)

gl

il

gl+1
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commutes, the image of Gl under gl+1 ◦ il lies in O(l) ⊂ O(l+ 1) naturally seen as a subset,
only acting on Rl ⊂ Rl+1. Looking more closely into the definition of fibre bundles, we
see that the transition functions of γ∗l (Vl+1) are of the form

θϕ,ϕ′ : U → O(l + 1) for U ⊂ BGl, ϕ, ϕ
′ : U × Rl+1 → Ql+1

−1
(U)

with im(θϕ,ϕ′) ⊂ O(l) acting invariantly on φ(Vl), leaving the orthogonal complement
ξ fixed. The transition functions are thus trivial on the 1-dimensional bundle ξ; hence
ξ = ε = BGl × R.
So the above diagram can be written as

Vl

φ(Vl)⊕ ε Vl+1

BGl BGl+1

V il

Ql

φ

γl

Bgl:=γl

inducing the bundle map

Vl ⊕ ε Vl+1

BGl BGl+1

γl◦(φ⊕id)

.

This bundle map extends the fiberwise injection V il : Vl → Vl+1 because γl ◦ φ = V il.
Viewing Vl ⊕ ε and Vl+1 as Rl+1-bundles with structure group O(l + 1), we see that

the isomorphism on each fibre is given by the action of an element in O(l + 1) and thus
preserves the metric. The previous two lemmata give us the following map:

kl : Th(Vl ⊕ ε) = Σ(Th(Vl)) = Σ(MGl)→MGl+1 = Th(Vl+1).

4.5. Thom’s Theorem

Theorem 4.15. The bordism groups ΩG
k (X) are isomorphic to

Hk(X;MG) = coliml→∞ πk+l(X+ ∧MGl).

Proof. To prove this theorem, we define an isomorphism

d : coliml→∞ πk+l(X+ ∧MGl)→ ΩG
k (X)

as follows: First we define a “collapse map” cl : ΩG
k (X)→ πk+l(X+∧MGl) for each l ≥ l0 for

some l0 ∈ N large enough. Then we define an inverse map dl : πk+l(X+ ∧MGl)→ ΩG
k (X)

for all l ≥ l1 for some l1 ∈ N large enough and show that cl and dl are inverses of one
another for all l ≥ max{l0, l1}. Finally we show that for each l ≥ max{l0, l1} the following
diagram commutes.

ΩG
k (X)

πk+l(X+ ∧MGl) πk+l+1(X+ ∧MGl+1)

cl

dl+1

cl+1

dl
ml

33



4. General Bordism Theories

Here ml is induced by the suspension and kl : ΣMGl →MGl+1. Thus the maps dl induce
a map d from the colimit and d is an isomorphism.

Construction of cl : ΩG
k (X)→ πk+l(X+ ∧MGl):

Let [Mk, f, γ] ∈ ΩG
k (X) be represented by a k-dimensional manifold Mk with an

embedding Mk ↪→ Sk+l for some l large enough, a continuous map f : Mk → X and a
Gl-structure γ : ν(Mk ↪→ Sk+l)→ Vl on the normal bundle of Mk in Sk+l. Composing f
with the bundle map ν(Mk ↪→ Sk+l)→Mk we obtain a map ν(Mk ↪→ Sk+l)→ X, which
we are also going to call f . Then the structure on Mk can equivalently be characterised
by a map

ν(Mk ↪→ Sk+l)
(f, γ)−−−→ X × Vl.

We want to use this structure to define a map

α := cl([M
k, f, γ]) : Sk+l → X+ ∧MGl.

A tubular neighbourhood of a submanifold j : M ↪→ W is an embedding J : ν(M ↪→
W ) ↪→ W of the normal bundle ν(M ↪→ W ) into W , restricting to the identity on the
zero section: J(0x) = x for x ∈M . By A.3 tubular neighbourhoods exist for boundaryless
manifolds.
Let J : ν(Mk ↪→ Sk+l) → Sk+l be a tubular neighbourhood of Mk in Sk+l. Set

U := J(D(ν(Mk ↪→ Sk+l))) to be the image of the disc bundle under J . Then U is a
neighbourhood of Mk in Sk+l, diffeomorphic to the disc bundle. Consider the following
composition of maps:

Sk+l (Sk+l)/((Sk+l \ U)) D(ν(Mk))/S(ν(Mk))

X+ ∧MGl Th(X × Vl) Th(ν(Mk))

proj.

α

ind. byJ−1
|U

Th(f, γ)

The above equalities are in fact isomorphism. While the vertical isomorphism is obvious,
the horizontal isomorphism uses the following arguments: For two bundles V1 → X1 and
V2 → X2 we have an isomorphism Th(V1 ⊕ V2) ∼= Th(V1) ∧ Th(V2) and considering X as
a 0-dimensional vector bundle over itself we see that Th(X) = X+. Hence we obtain the
required isomorphism:

Th(X × Vl) = Th(X ⊕ Vl) ∼= Th(X) ∧ Th(Vl) = X+ ∧MGl.

We have given an element [α] ∈ πk+l(X+ ∧MGl) but in order for our definition to be
well-defined we need to check independence from the chosen representative (Mk, f, γ) of
the bordism class [Mk, f, γ]:

Let (Mk
0 ↪→ Sk+l, f0, γ0) and (Mk

1 ↪→ Sk+l, f1, γ1) be two representatives of [Mk, f, γ]
and let (W k+1 ↪→ Sk+l × I, F,Γ) be a G-bordism between them. Since W k+1 restricts
to Mk

0

∐
Mk

1 at the boundary, a tubular neighbourhood J̃ : ν(W k+1)→ Sk+l × I can be
chosen so that it equals the tubular neighbourhoods J0 and J1 ofMk

0 andMk
1 , respectively,

at the boundary (J̃ restricts to J0 and J1 in the fibers over ∂W k+1). This implies that
Ũ ∩ (Sk+l × {0}) = U0 and Ũ ∩ (Sk+l × {1}) = U1, where U0 = J0(D(ν(Mk

0 ))), U1 =
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J1(D(ν(Mk
1 ))) and Ũ = J̃(D(ν(W k+1))). We apply the Pontryagin-Thom construction to

this map to obtain

Sk+l × I (Sk+l × I)/(((Sk+l × I) \ Ũ)) D(ν(W k+1))/S(ν(W k+1))

X+ ∧MGl Th(X × Vl) Th(ν(W k+1 ↪→ Sk+n × I))

proj.

H

ind. by J̃−1

|Ũ

Th(F, Γ)

The map H is a homotopy between the maps α1 and α2 obtained by using the respective
representatives (Mk

0 , f0, γ0) and (Mk
1 , f1, γ1) in the above construction.

Construction of the inverse maps dl : πk+l(X+ ∧MGl)→ ΩG
k (X):

Let [α : Sk+l → (X+∧MGl)] ∈ πk+l(X+∧MGl). Note that X ×BGl ↪→ X+×MGl →
X+∧MGl, where the first map is the product of the inclusion X → X+ with the inclusion
of BGl as the zero section and the second map is the collapse map, is an embedding,
because:

• {∞} ∩X = ∅,

• {∞} ∩BGl = ∅,

where ∞ denotes the basepoint of X+ and MGl, respectively.
Our aim is now to find a map β homotopic to α such that Mk := β−1(X×BGl) ⊂ Sk+l

is a smooth submanifold with a stable G-structure on its normal bundle ν(Mk ↪→ Sk+l).
The next lemma shows that there is a representative β : Sk+l → X+ ∧MGl such that

1. For X × Vl = (X+ ∧MGl) \ {∞} ⊂ X+ ∧MGl and A := β−1(X × Vl),

β : A→ X × Vl

is differentiable and transversal to the zero section X ×BGl ↪→ X × Vl of the fibre
bundle

X × Vl

X ×BGl

id×Ql .

2. For Mk := β−1(X ×BGl), there is a tubular neighbourhood J : ν(Mk ↪→ Sk+l)
∼=−→

J(ν(Mk)) := U ⊂ Sk+l such that

β(x) =∞⇔ x 6∈ U.

3. For the tubular neighbourhood U , the following map is a bundle map, i.e. a linear
isomorphism in each fibre:

ν(Mk) U X × Vl

Mk X ×BGl

J

ν

β

id×Ql

β

.
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4. General Bordism Theories

By transversality, Mk is a smooth submanifold of Sk+l. f : Mk → X can be defined as
prX ◦β and we get a bundle map γ : ν(Mk ↪→ Sk+l)→ Vl:

ν(W ) X × Vl Vl

W X ×BGl BGl

β◦J

ν

pr2

p

β pr2

,

which defines a G-structure for ν(Mk). Then [Mk ⊂ Sk+l, f, γ] ∈ ΩG
k (X) is a bordism

class of an X-manifold. For the map to be well-defined, we still need to show that the
construction is independent of the representative β of [α] satisfying the required properties.

Let δ : Sn+l → X+ ∧MGl be another representative satisfying the above properties 1, 2
and 3. Let H : Sk+l × I → X+ ∧MGl be a homotopy from β to δ. We are going to apply
the three steps from Lemma 4.16 to this homotopy:
By step one we can assume that H is differentiable on H−1(X × Vl) ⊂ Sk+l × I and

transversal to X×BGl. By step two we can assume that H maps a tubular neighbourhood
Ũ

J̃−1

−−→ ν(H−1(X × BGl) ↪→ Sk+l × I) to X × Vl and its complement to ∞. By a step
analogous to step three we extend the bundle maps

ν(β−1(X ×BGl) ↪→ Sk+l) X × Vl

β−1(X ×BGl) X ×BGl

ν

β

and
ν(δ−1(X ×BGl) ↪→ Sk+l) X × Vl

δ−1(X ×BGl) X ×BGl

ν

δ

to
ν(H−1(X ×BGl) ↪→ Sk+l × I) X × Vl

H−1(X ×BGl) X ×BGl
H

with induced G-structure ν(H−1(X×BGl))→ X×Vl
proj.−−→ Vl and map H−1(X×BGl)

H−→
X × BGl

π1−→ X. Then H−1(X × BGl) is a G-bordism between (β−1(X × BGl), pr1 ◦β)
and (δ−1(X × BGl), pr1 ◦δ). We have thus shown that dl : πk+l(X ∧MGl)→ ΩG

k (X) is
well-defined.

Commutativity of the dl’s:

πn+l(X+ ∧MGl) πn+l+1(X+ ∧MGl+1)

ΩG
n (X)

ml

dl dl+1

.
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4. General Bordism Theories

The upper homomorphism takes a class [α : Sk+l → X+ ∧MGl] to the class

[ml([α]) : Sk+l+1 = Σ(Sk+l)
Σα−→ Σ(X+ ∧MGl) = X+ ∧ Σ(MGl)

id∧kl−−−→ X+ ∧MGl+1].

A generalisation of Theorem 3.12 shows that dl+1([ml([α])] is the same manifold Mk (as
obtained as dl([α])), embedded into the equator Sk+l of Sk+l+1, with framing the direct
sum of the old framing and the trivial 1-dimensional framing. (Mk ⊂ Sk+l, f, γ) and
(Mk ⊂ Sk+l ⊂ Sk+l+1, f, γ ⊕ ε) are clearly bordant.

By properties 1, 2 and 3 above, dl is constructed so that dl ◦ cl = idΩG
k (X). By the

definition of cl, we have cl ◦ dl = idπk+l(X+∧MGl).

Lemma 4.16. Every element [α] ∈ πn+l(X+ ∧MGl) = [Sn+l, X+ ∧MGl]0 has a rep-
resentative β : Sn+l → X+ ∧MGl such that the three conditions in Theorem 4.15 are
fulfilled.

Proof. Let [α] ∈ πn+l(X+ ∧ MGl) be represented by α : Sn+l → X+ ∧ MGl. Set
A := α−1(X × Vl). We will homotope α in three steps to obtain a homotopic map
β fulfilling the three conditions.

Claim 1: There is a map α1 : Sn+l → X+ ∧MGl (pointed) homotopic to α such that
α−1

1 (X × Vl) = A and α1 : A→ X × Vl is differentiable and transversal to the zero section
X ×BGl.
Proof: By Theorem A.2 and Thom’s Transversality Theorem [A.10], there is a homotopy

H : A×I → X×Vl such that H0 = α and H1 is differentiable. By Theorem A.11, there is a
homotopy K : A× I → X ×Vl such that K0 = H1 and K1 is differentiable and transversal
to X×BGl ⊂ X×Vl. H and K can be extended to homotopies H,K : Sn+l → X+∧MGl

by setting H(x, t) = ∞ = K(x, t) for x 6∈ A, because H and K are proper maps, i.e.
preimages of compact sets are compact. Set α1 := K1.

Claim 2: Set W := α−1
1 (X ×BGl) and j : W ↪→ Sn+l. Let Uε ⊂ A ⊂ Sn+l be a tubular

neighbourhood of W , i.e. there is a diffeomorphism J : ν(W )→ Uε. Then there is a map
α2 : Sn+l → X+ ∧MGl (pointed) homotopic to α1 such that

• Uε = α−1
2 (X × Vl), i.e. α2(x) =∞⇔ x 6∈ Uε, and

• α2 : Uε → X × Vl is differentiable and transversal to the zero section X ×BGl.

Proof: Let λ : Sn+l → [0, 1] be a differentiable function with

λ−1(0) = Uε/2 and λ−1([0, 1)) = Uε.

Define H : Sn+l × I → X+ ∧MGl as

H(X, t) =

{
1

1−tλ(x)
· α1(x) for x ∈ A and t < 1, or x ∈ Uε and t = 1,

∞ else,

where · denotes scalar multiplication in each fibre of X × Vl.
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4. General Bordism Theories

Then H is a homotopy with
H(x, 0) = α1(x)

for all x ∈ Sn+l and

H(x, 1) =

{
1

1−λ(x)
· α1(x) for x ∈ Uε,

∞ else.

Set α2 := H1. Then:

x 6∈ Uε ⇒ α2(x) =∞, and x ∈ Uε ⇒ α2(x) ∈ X × Vl.

The latter is true because α1(x) is just modified by a scalar multiplication within a
fibre. So Uε = α−1

2 (X × Vl) is fulfilled. By construction, α2 is differentiable. Since
W = α−1

1 (X × BGl) ⊂ Uε/2 and α2|Uε/2 = α1|Uε/2 , the map α2 is also transversal to
X ×BGl.

Claim 3: There is a map β : Sn+l → X+ ∧MGl homotopic to α2 such that

• Uε = β−1(X × Vl) (as before),

• β : Uε → X × Vl is differentiable and transversal to the zero section X × BGl (as
before) and

•
ν(W ↪→ Sn+l) Uε X × Vl

W X ×BGl

J

ν

β

id×Ql
β

is a differentiable bundle map.

Proof: Consider the composition

h : ν(W )
J−→ Uε

α2−→ X × Vl.

Since α2 is differentiable and transversal to the zero section X × BGl, and J is a
diffeomorphism, h is also differentiable and transversal to X ×BGl. Define a homotopy
H : ν(W )× [0, 1]→ X × Vl by

Ht(x) :=
1

t
· h(t · x) for t > 0,

and extend it continuously to ν(W )× [0, 1]. Here · denotes scalar multiplication in each
fibre.
Locally h is of the form

U × Rl → V × Rl, (u, v) 7→ (h1(u, v), h2(u, v))

for U × Rl → ν−1(U), U ⊂ W a chart for ν and V × Rl → Q−1
l (V ), V ⊂ X × BGl a

chart for Ql. So in terms of these charts, H is of the from

Ht(x) = (h1(u, t · v),
1

t
· h2(u, t · v)) for t > 0.
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4. General Bordism Theories

Restricted to one fibre h is of the from hu : Rl → Rl, hu(x) = h2(u, x) with

lim
t→0

(
1

t
· h2(u, tv)) = lim

t→0
(
hu(tv)

t
) = D0hu ∈ Rl×l.

Then H0(u, v) = lim
t→0

(h1(u, tv), 1
t
· h2(u, tv)) = (h1(u, 0), D0hu). So H0 restricted to the

fibre over u ∈ U is the linear map D0hu. Because h is transversal to X × BGl, D0hu is
surjective onto the l-dimensional normal space of X × BGl in X × Vl at Q−1

l (u). Thus
H0 is a linear isomorphism in each fibre.
Set

K : Uε × I
J−1×id−−−−→ ν(W )× I H−→ X × Vl

and extend to a homotopy

K : Sn+l × I → ν(W )× I → X+ ∧MGl.

by sending any x 6∈ Uε to ∞. Again this is possible because K is proper.
Then β := K1 has the desired properties of the claim respectively of the lemma.

4.6. Some Bordism Groups

In the following I am going to state some facts about the bordism groups corresponding to
the empty structure O := {O(l), id, O(l) ↪→ O(l + 1)} called “unoriented bordism groups”,
and the “oriented bordism groups” corresponding to the orientation preserving structure
SO := {SO(l), SO(l) ↪→ O(l), SO(l) ↪→ SO(l + 1)}. These results are taken from [3] and
can be found there in more detail.
We call the groups ΩG

k := ΩG
k (pt) the coefficients of the generalised homology theory.

Note that pt+ ∧M = M for a manifold M , so by the previous Theorem 4.15

ΩG
k
∼= lim

l→∞
πn+l(MGl).

Here is a summary of some known results about oriented bordism groups:

k 0 1 2 3 4

ΩSO
k Z 0 0 0 Z

While it is more complicated to characterise the oriented bordism groups for general
manifolds, there is an easy observation for unoriented bordism groups. As indicated in
the introduction, any element in ΩO

k (X) is of order two for any k ∈ N and any manifold
X. Therefore all oriented bordism groups ΩO

k (X) consist only of elements of order two.
A theorem of Thom which can be found in [3, Ch. 10.10] gives all unoriented bordism
groups of a point.
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A. Appendix

The definitions and theorems listed in this appendix can be found in [1], [3] and [8].

A.1. Differential Topology

Theorem A.1. [Whitney embedding theorem]
Let ε : Mm → R be a strictly positive map and f : Mm → Rp, p > 2n, a map that

is an embedding in a neighbourhood of the closed subset A ⊂ Mm. Then there is an
ε-approximation g : Mm → Rp of f such that g|A = f|A and g is an embedding of Mm

with g(Mm) ⊂ Rp closed. g is called ε-approximation of f if the distance of f(x) and
g(x) is less than ε(x) for all x ∈ Mm (w.r.t. a given metric on Rp). f only needs to be
continuous for this, as shows the next theorem.

Theorem A.2. Let f : M → N be a continuous map, differentiable on the closed subset
A ⊂M . Let ε : M → R be strictly positive and suppose N carries a metric. Then there is
a differentiable ε-approximation g : M → N of f with g|A = f|A

Definition and Lemma A.3. [Tubular neighbourhood]
Let M be a boundaryless manifold and j : N ↪→ M an embedding of a submanifold.

Then there is an embedding J : ν(N) → M extending j on the zero section N ⊂ ν(N)
and mapping ν(N) diffeomorphically onto an open neighbourhood U ⊂M of J(N). This
neighbourhood U is called tubular neighbourhood of N in M .

Definition A.4. [Regular value]
Let f : M → N be a smooth map of smooth manifolds. x ∈M is called a regular point

of f if the differential Dxf is nonsingular. A point y ∈ N is called a regular value if f−1(y)
contains only regular points.

Theorem A.5. [Theorem of Sard] [8]
Let f : U → Rn be a smooth map with U ⊂ Rm open and set

C := {x ∈ U | rankDxf < n}.

Then the image f(X) ⊂ Rn has Lebesgue measure zero.

Corollary A.6. [Corollary by Brown]
Let f : Mm → Nn, be a smooth map of smooth manifolds, m ≥ n. The set of regular

values of f is everywhere dense in N .

Lemma A.7. Let f : Mm → Nn be a map of manifolds with m ≥ n and z ∈ N a regular
value of f . Then the set f−1(y) ⊂M is a submanifold of M of dimension m− n.

A.2. Transversality

In the following we consider all maps between smooth manifolds to be smooth if not
otherwise stated.

Let f : M → N be a map between manifolds M and N , let U ⊂ N be a submanifold of
N . We want f−1(U) ⊂M to be a submanifold of M , which unfortunately is not always
the case, nevertheless it is in almost all cases. This is a generalisatoin of the Sard Theorem.
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Definition A.8. Let Uk, V l ⊂ Nn be two submanifolds of the manifold N . We say that
U and V intersect transversally in p ∈ U ∩ V if TpU + TpV = TpN . The submanifolds U
and V are transverse if they intersect transversally in every point of intersection. If U
and V do not intersect, they are said to be vacuously transverse.

Let f : Mm → Nn be a map of manifolds and Un−k ⊂ N a submanifold. The map f is
transverse to U in x ∈M if

f(x) ∈ U ⇒ Tf(x)U + Txf(TxM) = Tf(x)N,

i.e. TxM should be mapped surjectively onto Tf(x)/Tf(x)U . The map f is called transverse
to U if it is transverse to U in every point x ∈ M . Note that if U = {pt} is a point
transverse to f , it is a regular value of f .

Two maps f, g : Mm → Nn are called transverse in x ∈M if

f(x) = g(x)⇒ Txf(TxM) + Txg(TxM) = Tf (x)N,

i.e. the images of the tangent space of M under the differentials of f and g generate the
tangent space of N . The maps f and g are called transverse if they are transverse in
every point x ∈M .

Theorem A.9. If f : Mm → Nn is a map of manifolds transverse to the submanifold
Un−k ⊂ N , then f−1(U) is a submanifold of M of dimension m− k.

Theorem A.10. [Thom’s Transverality Theorem]
Let f : Mm → Nn be a map of manifolds and U ⊂ N a closed submanifold. Let A ⊂M

be closed with f transversal to U in every point x ∈ A. Let δ : M → R be strictly positive
and N a manifold carrying a metric. Then there is a δ-approximation g : M → N of f
with g|A = f|A, transversal to U .

In particular any continuous map can be homotoped to a transversal map:

Theorem A.11. Let f : Mm → Nn be a continuous map of smooth manifolds, let N
carry a metric. Then for every strictly positive map ε : M → R there is a strictly positive
map δ : M → R such that:

If g is a δ-approximation of f , then g is homotopic to f by a homotopy F (x, t) with

• F (x, t) = f(x), if g(x) = f(x),

• F (x, t) is an ε-approximation of f for each t ∈ [0, 1].

A.3. Fibre Bundles

Definition A.12. A fibre bundle is given by a quadruple (p, E,B, F ) where E, B and
F are topological spaces and p : E → B is a map of topological spaces together with a
collection of homeomorphisms ϕ : U × F → p−1(U) for open sets U in B called charts
over U satisfying the following conditions:

1. For each b ∈ B there is a neighbourhood U with a chart ϕ : p−1(U)→ U .

2. If ϕ is a chart over U ⊂ B and V ⊂ U is open, then ϕ|V is a chart over V .
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3. p is locally trivial, i.e. for each chart ϕ : p−1(U) → U , the following diagram
commutes:

U × F p−1(U)

U

prU

ϕ

p

4. The collection of charts is maximal among those satisfying the previous three
conditions.

E is called the total space, B the base space and F the fibre.

Definition A.13. Let G be a topological group acting on a topological space F . Then
a fibre bundle with structure group G is a fibre bundle (p, E,B, F ) as above such that
additionaly:

3.b For any two charts ϕ, ϕ′ over U , there exists a continuous function θϕ,ϕ′ : U → G
called transition function or change of charts such that

ϕ′(u, f) = ϕ(u, θϕ,ϕ′(u) · f)

for all u ∈ U, f ∈ F .

holds.

Lemma A.14. Given spaces B and F , a group G acting on F from the left and a
collection of transition functions T = (Uα, θα : Uα → G) such that:

1. The Uα cover B,

2. (U, θ) ∈ T and W ⊂ U ⇒ (W, θ|W ) ∈ T ,

3. (U, θ1), (U, θ2) ∈ T ⇒ (U, θ1 · θ2) ∈ T , where · denotes pointwise multiplication,

4. T is maximal with respect to these three properties.

Then there exists a fibre bundle p : E → B with structure group G, fibre F and transition
functions θα unique up to fibre isomorphism.

Definition A.15. For a topological group G a principal G-bundle over B is a fibre bundle
p : P → B with fibre F = G and structure group G acting on itself by left translation:

G→ Homeo(G), g 7→ (x 7→ g · x).

Proposition A.16. If p : P → B is a principal G-bundle, then G acts freely on P from
the right.

Changing the fibre: By Lemma A.14, the transition functions determine a bundle. So
given a fibre bundle p : E → B with fibre F and structure group G, we can change p to
another fibre bundle p′ : E ′ → B with the same transition functions, the same structure
group G and a new fibre F ′, under the conditions that G acts on F ′ from the left. This
can especially be done to construct principal bundles from fibre bundles:
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Given a fibre bundle
F E

B

p ,

we can always change the fibre from F to F ′ := G since G acts on itself by left translation.
The resulting bundle

G P (E)

B

p

is then principal, called the principal G-bundle underlying the fibre bundle p : E → B with
structure group G. The construction also works in the other direction: Given a principal
G-bundle and a space F acted upon by G, we can construct an associated fibre bundle
with fibre F and the same transition functions as the principal bundle. An alternative
construction is given by the Borel construction:

Definition and Lemma A.17. Given a principal G-bundle p : E → B and a space F
acted upon by G, set

P ×G F := (P × F )/∼, where (x, f) ∼ (xg, g−1f) for all x ∈ P, f ∈ F, g ∈ G

and
q : P ×G F → B, [x, f ] 7→ p(x).

Then
F P ×G F

B

q

is a fibre bundle over B with structure group G and the same transition functions as p.

Definition and Theorem A.18. For every topological group G there exists a principal
G-bundle

EG→ BG

where EG is a contractible space. This bundle is called the universal principal G-bundle.
The space BG is called the classifying space for G and has the following property:
The map

Φ: Maps(B,BG)→ {Principal G-bundles over B}

defined by pulling back the universal principal bundle EG→ BG along the map c : B → BG
(so Φ(c) = c∗(EG)) induces a bijection from the homotopy set [B,BG] to the set of
isomorphism classes of principal G-bundles over B, when B is a paracompact space.
For a principal G-bundle P → B, the map c : B → BG with P = c∗(EG) is called the
classifying map for P → B.
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