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lp-Measure equivalence

Measure equivalence with lp-condition
A ME-coupling (Ω, µ) of Γ and Λ is a measure space with a µ-preserving
action of Γ× Λ such that Γ, Λ both have a µ-finite fundamental domain.
If Γ and Λ admit a ME-coupling with lp-integrable cocycles w.r.t. some
fundamental domains then we call them lp-measure equivalent.

lp-coycles
A measurable cocycle α : Γ× (X , µ)→ Λ is lp-integrable if for every γ ∈ Γ∫

X
l(α(γ, x))pdµ(x) <∞,

where l : Λ→ N is the length function for some word metric on Λ.

lp-ME interpolates between p =∞ (⇒ QI) and p = 0 (=ME).
lp-ME is an equivalence relation on groups.
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Rigidity result for hyperbolic lattices

Theorem (informal)

Let Γ be a lattice in G = Isom(Hn), n ≥ 3. Then any l1-ME-coupling of Γ
with another group basically comes from the standard example of lattices
in G or atomic couplings of commensurable groups.

The standard coupling of hyperbolic lattices is l1-integrable.
A corresponding rigidity result for orbit equivalence (OE) can be
formulated.
Analogous rigidity results (without any l1-integrability condition) for
lattices in higher rank Lie groups hold true [Furman, 2000].
Lack of rigidity for n = 2: Z2 ∗ Z2 OE to Z ∗ Z.
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Precise rigidity result – ME-version

Theorem (Bader-Furman-S.)
Let Γ be a lattice in G = Isom(Hn), n ≥ 3. Let (Ω, µ) be an ergodic,
l1-integrable ME-coupling with another group Λ.
Then the following holds:
a) There exists a homomorphism ρ : Λ→ G with finite kernel and image

being a lattice in G.
b) There exists a Γ× Λ-equivariant measurable map φ : Ω→ G; the

push-forward measure φ∗µ is the Haar measure corresponding either
i) to G,
ii) or to its index two subgroup G 0 = Isom+(Hn),
iii) or to a lattice Γ′ < G.

In the latter case, Γ′ contains Γ and ρ(Λ) as subgroups of finite index.



Classical Mostow rigidity

Theorem (Mostow rigidity – Lie-theoretic version)
Any isomorphism Γ→ Λ of lattices in G = Isom(Hn), n ≥ 3, extends to an
automorphism of G.

Theorem (Mostow rigidity – topological version)
Let M and N be closed hyperbolic n-dimensional manifolds. Then any
homotopy equivalence M → N is homotopic to an isometry.

topological version ⇒ Lie-theoretic version:

Extension of map

M̃ //___ Ñ

Γ
?�

OO

// Λ
?�

OO
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Thurston’s proof of (topological) Mostow rigidity

Proof for closed manifolds

Step 1) f : M '−→ N ⇒ ‖M‖ = ‖N‖ ⇒ vol(M) = vol(N)
[Gromov-Thurston].

Step 2) f̃ : Hn → Hn is a quasi-isometry, thus induces a homeomorphism
∂∞ f̃ : ∂∞Hn ∼=−→ ∂∞Hn.

Step 3) Regular, ideal n-simplices are exactly the geodesic n-simplices with
maximal volume [Haagerup-Munkholm].
∂∞ f̃ preserves regular, ideal simplices.

Step 4) Hyperbolic geometry: ∂∞ f̃ induced by an isometry.

Modification for finite volume manifolds

Only from volume considerations, Thurston constructs a measurable ∂∞ f̃
that preserves regular, ideal n-simplices almost everywhere.
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Reduction of main theorem to cocycle Mostow rigidity I

Theorem (adapted from Furman’s earlier work)
Let Γ be a lattice in G = Isom(Hn), and Λ be an arbitrary group ME to Γ
via the coupling (Ω,m). Let (Σ, n) = (Ω,m)×Λ (Ωop,m) be the
corresponding self-coupling of Γ. Assume that there exists a measurable
Γ× Γ-equivariant map Φ : Σ→ G ("untwisting map"), i.e. n-a.e.

Φ([γx , γ′y ]) = γΦ([x , y ])γ′−1 (γ, γ′ ∈ Γ).

Then there exist measurable maps f : Ω→ G and a homomorphism
ρ : Λ→ G so that

f
(
(γ, λ)x

)
= γf (x)ρ(λ)−1.

Then elementary observations (for lattice image) and an application of
Ratner’s theorems (for identifying Φ∗n) eventually yield the main theorem.

. . . How do we get the untwisting map?



Reduction of main theorem to cocycle Mostow rigidity II

Setting
– Let X ⊂ Σ be a common fundamental domain of both copies of Γ, and
α : Γ× X → X be the corresponding OE-cocycle.

– We may assume that Γ ⊂ Isom(Hn) is co-compact. Let M = Γ\Hn.

Proof of main theorem – outline
Step 1) Extend α : X → map(Γ, Γ) to a α-equivariant, measurable map

ψ : X → map(M̃, M̃).
Step 2) Show that ψ induces a measurable, α-equivariant map

∂∞ψ : X →M(∂Hn, ∂Hn) that preserves regular, ideal
n-simplices.

Step 3) Hyperbolic geometry⇒ ∂∞ψ comes from of a α-equivariant map
φ : X → Isom(M̃) = G (cocycle Mostow rigidity).

Step 4) φ is a coboundary for α; thus we can also untwist Σ.



A crucial step in the proof – controlling volume

Lemma
For any geodesic simplex σ with vol(σ) ≈ vmax we have∫

X

∫
Γ\G

vol(ψx(gσ))dµX (x)dµΓ\G (g) ≈ vol(σ).

Volume and degree 1 maps
Let f : M → M be a degree 1 map. Let c =

∑
aiσi be an n-cycle. Then:∑

ai volor(σi ) =
∑

ai volor(f (σ)).

Find suitable homology theories for our situation.
Show that ψ : X → map(M̃, M̃) is of degree 1.
View left side of lemma as the evaluation of a homology class at the
volume form.
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l1-homology and induced maps

Maps induced by α : Γ× X → Γ and ψ : X → map(M̃, M̃)

Z⊗ZΓ C∗(Γ) � � //

C∗(α)

��

Z⊗ZΓ C geo
∗ (M̃)

Cgeo
∗ (φ)

��

L1(X ; Z)⊗ZΓ C∗(Γ)
1 � � // L1(X ; Z)⊗ZΓ C geo

∗ (M̃)
1

Remarks

L1(X ; Z)⊗ZΓ C geo
∗ (M̃) =

⊕
F L1(X ; Z)

Vertical maps are inclusions of orbits.
C0(α)(1⊗ γ) =

∑
χXi ⊗ γi where α(x , γ) = γi constant on x ∈ Xi .



A new deformation-rigidity phenomenon

Integrality, Poincare duality, simplicial volume
We have by Poincare duality and ergodicity

Hn(L1(X ; Z)⊗ZΓ C geo
∗ (M̃)) ∼= H0(M̃; L1(X ; Z)) = L1(X ; Z)Γ ∼= Z.

Since the simplicial volume of M is > 0 every Cauchy sequence of cycles in
L1(X ; Z)⊗ZΓ C geo

n (M̃) is eventually constant!

Sobolev homology and l1-condition
Under l1-integrability, we show that Hn(φ) already lands in

Hn
(
L1(X ; Z)⊗ZΓ C geo

∗ (M̃)
)
⊂ Hn

(
L1(X ; Z)⊗ZΓ C geo

∗ (M̃)
1)

For this we use a new tool (Sobolev homology) and the ability to subdivide
geodesic simplices in negative curvature very efficiently.

. . . THANK YOU!
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