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[P-Measure equivalence

Measure equivalence with /P-condition

A ME-coupling (2, 1) of T and A is a measure space with a u-preserving
action of ' x A such that I', A both have a p-finite fundamental domain.
If I and A admit a ME-coupling with /P-integrable cocycles w.r.t. some
fundamental domains then we call them /P-measure equivalent.

IP-coycles
A measurable cocycle o : T x (X, ) — A is [P-integrable if for every v € T

[ Hatrx))Pdue) < o
X

where / : A — N is the length function for some word metric on A.
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@ [P-ME interpolates between p = oo ( = Ql) and p =0 (=ME).

@ [P-ME is an equivalence relation on groups.



Rigidity result for hyperbolic lattices

Theorem (informal)

Let T be a lattice in G = Isom(H"), n > 3. Then any I*-ME-coupling of T
with another group basically comes from the standard example of lattices
in G or atomic couplings of commensurable groups.




Rigidity result for hyperbolic lattices

Theorem (informal)

Let T be a lattice in G = Isom(H"), n > 3. Then any I*-ME-coupling of T
with another group basically comes from the standard example of lattices
in G or atomic couplings of commensurable groups.

@ The standard coupling of hyperbolic lattices is /*-integrable.

@ A corresponding rigidity result for orbit equivalence (OE) can be
formulated.

@ Analogous rigidity results (without any /*-integrability condition) for
lattices in higher rank Lie groups hold true [Furman, 2000].

o Lack of rigidity for n = 2: Z? x Z? OE to Z % Z.



Precise rigidity result — ME-version

Theorem (Bader-Furman-S.)

Let T be a lattice in G = Isom(H"), n > 3. Let (2, 1) be an ergodic,
[*-integrable ME-coupling with another group A.

Then the following holds:

a) There exists a homomorphism p : N — G with finite kernel and image
being a lattice in G.
b) There exists a [ x N-equivariant measurable map ¢ : Q — G, the
push-forward measure ¢, is the Haar measure corresponding either
i) to G,
i) or to its index two subgroup G° = Isom (H"),
i) or to a lattice " < G.

In the latter case, " contains T and p(M\) as subgroups of finite index.




Classical Mostow rigidity

Theorem (Mostow rigidity — Lie-theoretic version)

Any isomorphism I — A of lattices in G = Isom(H"), n > 3, extends to an
automorphism of G.

v

Theorem (Mostow rigidity — topological version)

Let M and N be closed hyperbolic n-dimensional manifolds. Then any
homotopy equivalence M — N is homotopic to an isometry.
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Thurston's proof of (topological) Mostow rigidity

Proof for closed manifolds

Step 1) f: M = N = |[M|| = | N|| = vol(M) = vol(N)
[Gromov-Thurston].

Step 2) f:H" — H" is a quasi-isometry, thus induces a homeomorphism
Boof : OooH" = Qoo H.

Step 3) Regular, ideal n-simplices are exactly the geodesic n-simplices with

maximal volume [Haagerup-Munkholm].
Osof preserves regular, ideal simplices.

Step 4) Hyperbolic geometry: Osof induced by an isometry.
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Proof for closed manifolds

Step 1) f: M = N = |[M|| = | N|| = vol(M) = vol(N)
[Gromov-Thurston].

Step 2) f:H" — H" is a quasi-isometry, thus induces a homeomorphism
Boof : OooH" = Qoo H.

Step 3) Regular, ideal n-simplices are exactly the geodesic n-simplices with

maximal volume [Haagerup-Munkholm].
Osof preserves regular, ideal simplices.

Step 4) Hyperbolic geometry: Osof induced by an isometry.

Modification for finite volume manifolds

Only from volume considerations, Thurston constructs a measurable 0. f
that preserves regular, ideal n-simplices almost everywhere.




Reduction of main theorem to cocycle Mostow rigidity |

Theorem (adapted from Furman'’s earlier work)

Let T be a lattice in G = Isom(H"), and A be an arbitrary group ME to I’
via the coupling (2, m). Let (X,n) = (2, m) xp (2°P, m) be the
corresponding self-coupling of I'. Assume that there exists a measurable
I x -equivariant map ® : ¥ — G ("untwisting map"), i.e. n-a.e.

O([vx,7'y]) = vo([x,yD)¥™" (.7 €T).

Then there exist measurable maps f : Q — G and a homomorphism
p:N— G so that

F((7, A)x) = vf(x)p(A) .

Then elementary observations (for lattice image) and an application of
Ratner's theorems (for identifying ®,n) eventually yield the main theorem.

... How do we get the untwisting map?




Reduction of main theorem to cocycle Mostow rigidity Il

Setting

— Let X C X be a common fundamental domain of both copies of I', and
a: T x X — X be the corresponding OE-cocycle.

— We may assume that I' C Isom(H?") is co-compact. Let M = "\H".

Proof of main theorem — outline

Step 1) Extend a: X — map(I',T) to a a-equivariant, measurable map
¥ X — map(M, M).

Step 2) Show that ¢ induces a measurable, a-equivariant map
0o : X — M(OH",0H") that preserves regular, ideal
n-simplices.

Step 3) Hyperbolic geometry = 0% comes from of a a-equivariant map
¢ X — Isom(M) = G (cocycle Mostow rigidity).

Step 4) ¢ is a coboundary for «; thus we can also untwist .




A crucial step in the proof — controlling volume

Lemma

For any geodesic simplex o with vol(c) & vmax we have

[ . vl g1 o) ~ ol
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Volume and degree 1 maps
Let f : M — M be a degree 1 map. Let ¢ = ) ajo; be an n-cycle. Then:

or or
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@ Find suitable homology theories for our situation.
o Show that 1) : X — map(M, M) is of degree 1.

@ View left side of lemma as the evaluation of a homology class at the
volume form.




I*-homology and induced maps

Maps induced by o : T x X - Tand ¢ : X — map(/\7l, l\7l)

Z ®zr Cu(T) € Z Qzr Cfeo(/\~/7)

Ci(@) lC§e°(¢)

=l
[1(X; Z) a1 Gu(T) > L(X; Z) ®zr CE°(M)

Remarks
o LY(X;Z) ®@zr CE°(M) = @ LX(X; Z)

@ Vertical maps are inclusions of orbits.

o Go(a)(1®7) = > xx; ®~i where a(x,7) = ~; constant on x € X;.

v




A new deformation-rigidity phenomenon

Integrality, Poincare duality, simplicial volume
We have by Poincare duality and ergodicity

Ha(LX(X; Z) @zr CE©(M)) = HO(M; LX(X; Z)) = LX(X;Z)" = Z.

Since the simplicial volume of M is > 0 every Cauchy sequence of cycles in
LY(X;Z) @zr C5°°(M) is eventually constant!

v
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Sobolev homology and /*-condition

Under /*-integrability, we show that H,(¢) already lands in

Ha(LX(X; Z) @z CE°(M)) C Ha(LY(X; Z) ®zr C§e°(A7I)1)

For this we use a new tool (Sobolev homology) and the ability to subdivide
geodesic simplices in negative curvature very efficiently.
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... THANK YOU!



