I¹-Measure equivalence rigidity of hyperbolic lattices

Uri Bader Alex Furman Roman Sauer

¹Technion

²University of Illinois

³University of Chicago

Banff, March 2008

IP-Measure equivalence

Measure equivalence with I^p -condition

A ME-coupling (Ω, μ) of Γ and Λ is a measure space with a μ -preserving action of $\Gamma \times \Lambda$ such that Γ , Λ both have a μ -finite fundamental domain. If Γ and Λ admit a ME-coupling with I^p -integrable cocycles w.r.t. some fundamental domains then we call them I^p -measure equivalent.

I^p-coycles

A measurable cocycle $\alpha: \Gamma \times (X, \mu) \to \Lambda$ is I^p -integrable if for every $\gamma \in \Gamma$

$$\int_X I(\alpha(\gamma,x))^p d\mu(x) < \infty,$$

where $I: \Lambda \to \mathbb{N}$ is the length function for some word metric on Λ .

- I^p -ME interpolates between $p = \infty$ (\Rightarrow QI) and p = 0 (=ME).
- *IP*-ME is an equivalence relation on groups.

^{/p}-Measure equivalence

Measure equivalence with I^p -condition

A ME-coupling (Ω, μ) of Γ and Λ is a measure space with a μ -preserving action of $\Gamma \times \Lambda$ such that Γ , Λ both have a μ -finite fundamental domain. If Γ and Λ admit a ME-coupling with I^p -integrable cocycles w.r.t. some fundamental domains then we call them I^p -measure equivalent.

I^p-coycles

A measurable cocycle $\alpha: \Gamma \times (X, \mu) \to \Lambda$ is I^p -integrable if for every $\gamma \in \Gamma$

$$\int_X I(\alpha(\gamma,x))^p d\mu(x) < \infty,$$

where $I: \Lambda \to \mathbb{N}$ is the length function for some word metric on Λ .

- I^p -ME interpolates between $p = \infty$ (\Rightarrow QI) and p = 0 (=ME).
- *I^p*-ME is an equivalence relation on groups.

Rigidity result for hyperbolic lattices

Theorem (informal)

Let Γ be a lattice in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$. Then any l^1 -ME-coupling of Γ with another group basically comes from the standard example of lattices in G or atomic couplings of commensurable groups.

- The standard coupling of hyperbolic lattices is l^1 -integrable.
- A corresponding rigidity result for orbit equivalence (OE) can be formulated.
- Analogous rigidity results (without any I¹-integrability condition) for lattices in higher rank Lie groups hold true [Furman, 2000].
- Lack of rigidity for n = 2: $\mathbb{Z}^2 * \mathbb{Z}^2$ OE to $\mathbb{Z} * \mathbb{Z}$.

Rigidity result for hyperbolic lattices

Theorem (informal)

Let Γ be a lattice in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$. Then any l^1 -ME-coupling of Γ with another group basically comes from the standard example of lattices in G or atomic couplings of commensurable groups.

- The standard coupling of hyperbolic lattices is l^1 -integrable.
- A corresponding rigidity result for orbit equivalence (OE) can be formulated.
- Analogous rigidity results (without any l¹-integrability condition) for lattices in higher rank Lie groups hold true [Furman, 2000].
- Lack of rigidity for n = 2: $\mathbb{Z}^2 * \mathbb{Z}^2$ OE to $\mathbb{Z} * \mathbb{Z}$.

Precise rigidity result – ME-version

Theorem (Bader-Furman-S.)

Let Γ be a lattice in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$. Let (Ω, μ) be an ergodic, l^1 -integrable ME-coupling with another group Λ .

Then the following holds:

- a) There exists a homomorphism $\rho:\Lambda\to G$ with finite kernel and image being a lattice in G.
- b) There exists a $\Gamma \times \Lambda$ -equivariant measurable map $\phi : \Omega \to G$; the push-forward measure $\phi_*\mu$ is the Haar measure corresponding either
 - i) to G,
 - ii) or to its index two subgroup $G^0 = \text{Isom}_+(\mathbb{H}^n)$,
 - iii) or to a lattice $\Gamma' < G$.

In the latter case, Γ' contains Γ and $\rho(\Lambda)$ as subgroups of finite index.

Theorem (Mostow rigidity – Lie-theoretic version)

Any isomorphism $\Gamma \to \Lambda$ of lattices in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$, extends to an automorphism of G.

Theorem (Mostow rigidity – topological version)

Let M and N be closed hyperbolic n-dimensional manifolds. Then any homotopy equivalence $M \to N$ is homotopic to an isometry.

topological version \Rightarrow Lie-theoretic version:

Theorem (Mostow rigidity – Lie-theoretic version)

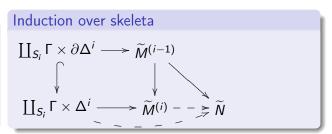
Any isomorphism $\Gamma \to \Lambda$ of lattices in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$, extends to an automorphism of G.

Theorem (Mostow rigidity – topological version)

Let M and N be closed hyperbolic n-dimensional manifolds. Then any homotopy equivalence $M \to N$ is homotopic to an isometry.

topological version \Rightarrow Lie-theoretic version:

Extension of map $\widetilde{M} \longrightarrow \widetilde{N}$ $\uparrow \qquad \qquad \uparrow$ $\Gamma \longrightarrow \Lambda$



Theorem (Mostow rigidity - Lie-theoretic version)

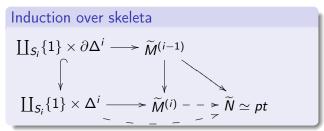
Any isomorphism $\Gamma \to \Lambda$ of lattices in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$, extends to an automorphism of G.

Theorem (Mostow rigidity – topological version)

Let M and N be closed hyperbolic n-dimensional manifolds. Then any homotopy equivalence $M \to N$ is homotopic to an isometry.

topological version \Rightarrow Lie-theoretic version:

Extension of map $\widetilde{M} -- > \widetilde{N}$ $\downarrow \qquad \qquad \downarrow$ $\Gamma \longrightarrow \Lambda$



Theorem (Mostow rigidity – Lie-theoretic version)

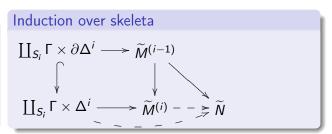
Any isomorphism $\Gamma \to \Lambda$ of lattices in $G = \text{Isom}(\mathbb{H}^n)$, $n \geq 3$, extends to an automorphism of G.

Theorem (Mostow rigidity – topological version)

Let M and N be closed hyperbolic n-dimensional manifolds. Then any homotopy equivalence $M \to N$ is homotopic to an isometry.

topological version \Rightarrow Lie-theoretic version:

Extension of map $\widetilde{M} \longrightarrow \widetilde{N}$ $\uparrow \qquad \qquad \uparrow$ $\Gamma \longrightarrow \Lambda$



Thurston's proof of (topological) Mostow rigidity

Proof for closed manifolds

- Step 1) $f: M \xrightarrow{\simeq} N \Rightarrow ||M|| = ||N|| \Rightarrow vol(M) = vol(N)$ [Gromov-Thurston].
- Step 2) $\tilde{f}: \mathbb{H}^n \to \mathbb{H}^n$ is a quasi-isometry, thus induces a homeomorphism $\partial_\infty \tilde{f}: \partial_\infty \mathbb{H}^n \xrightarrow{\cong} \partial_\infty \mathbb{H}^n$.
- Step 3) Regular, ideal *n*-simplices are exactly the geodesic *n*-simplices with maximal volume [Haagerup-Munkholm]. $\partial_{\infty} \tilde{f}$ preserves regular, ideal simplices.
- Step 4) Hyperbolic geometry: $\partial_{\infty} \tilde{f}$ induced by an isometry.

Modification for finite volume manifolds

Only from volume considerations, Thurston constructs a measurable $\partial_{\infty} \tilde{f}$ that preserves regular, ideal *n*-simplices almost everywhere.

Thurston's proof of (topological) Mostow rigidity

Proof for closed manifolds

- Step 1) $f: M \xrightarrow{\simeq} N \Rightarrow ||M|| = ||N|| \Rightarrow vol(M) = vol(N)$ [Gromov-Thurston].
- Step 2) $\tilde{f}: \mathbb{H}^n \to \mathbb{H}^n$ is a quasi-isometry, thus induces a homeomorphism $\partial_{\infty} \tilde{f}: \partial_{\infty} \mathbb{H}^n \xrightarrow{\cong} \partial_{\infty} \mathbb{H}^n$.
- Step 3) Regular, ideal *n*-simplices are exactly the geodesic *n*-simplices with maximal volume [Haagerup-Munkholm]. $\partial_{\infty} \tilde{f}$ preserves regular, ideal simplices.
- Step 4) Hyperbolic geometry: $\partial_{\infty}\tilde{f}$ induced by an isometry.

Modification for finite volume manifolds

Only from volume considerations, Thurston constructs a measurable $\partial_{\infty}\tilde{f}$ that preserves regular, ideal *n*-simplices almost everywhere.

Reduction of main theorem to cocycle Mostow rigidity I

Theorem (adapted from Furman's earlier work)

Let Γ be a lattice in $G = \text{Isom}(\mathbb{H}^n)$, and Λ be an arbitrary group ME to Γ via the coupling (Ω, m) . Let $(\Sigma, n) = (\Omega, m) \times_{\Lambda} (\Omega^{\operatorname{op}}, m)$ be the corresponding self-coupling of Γ . Assume that there exists a measurable $\Gamma \times \Gamma$ -equivariant map $\Phi : \Sigma \to G$ ("untwisting map"), i.e. n-a.e.

$$\Phi([\gamma x, \gamma' y]) = \gamma \Phi([x, y]) \gamma'^{-1} \qquad (\gamma, \gamma' \in \Gamma).$$

Then there exist measurable maps $f:\Omega\to G$ and a homomorphism $\rho:\Lambda\to G$ so that

$$f((\gamma, \lambda)x) = \gamma f(x)\rho(\lambda)^{-1}.$$

Then elementary observations (for lattice image) and an application of Ratner's theorems (for identifying $\Phi_* n$) eventually yield the main theorem.

... How do we get the untwisting map?

Reduction of main theorem to cocycle Mostow rigidity II

Setting

- Let X ⊂ Σ be a common fundamental domain of both copies of Γ, and α : Γ × X → X be the corresponding OE-cocycle.
- We may assume that $\Gamma \subset \text{Isom}(\mathbb{H}^n)$ is co-compact. Let $M = \Gamma \backslash \mathbb{H}^n$.

Proof of main theorem - outline

- Step 1) Extend $\alpha: X \to \operatorname{map}(\Gamma, \Gamma)$ to a α -equivariant, measurable map $\psi: X \to \operatorname{map}(\widetilde{M}, \widetilde{M})$.
- Step 2) Show that ψ induces a measurable, α -equivariant map $\partial_{\infty}\psi:X\to\mathcal{M}(\partial\mathbb{H}^n,\partial\mathbb{H}^n)$ that preserves regular, ideal n-simplices.
- Step 3) Hyperbolic geometry $\Rightarrow \partial_{\infty} \psi$ comes from of a α -equivariant map $\phi: X \to \mathsf{Isom}(\widetilde{M}) = G$ (cocycle Mostow rigidity).
- Step 4) ϕ is a coboundary for α ; thus we can also untwist Σ .

A crucial step in the proof – controlling volume

Lemma

For any geodesic simplex σ with $vol(\sigma) \approx v_{max}$ we have

$$\int_X \int_{\Gamma \backslash G} \operatorname{vol}(\psi_{\mathsf{X}}(g\sigma)) d\mu_{\mathsf{X}}(\mathsf{X}) d\mu_{\Gamma \backslash G}(g) \approx \operatorname{vol}(\sigma).$$

Volume and degree 1 maps

Let $f: M \to M$ be a degree 1 map. Let $c = \sum a_i \sigma_i$ be an *n*-cycle. Then

$$\sum a_i\operatorname{\mathsf{vol}}^{\operatorname{or}}(\sigma_i) = \sum a_i\operatorname{\mathsf{vol}}^{\operatorname{or}}(f(\sigma)).$$

- Find suitable homology theories for our situation.
- Show that $\psi: X \to \operatorname{map}(\widetilde{M}, \widetilde{M})$ is of degree 1.
- View left side of lemma as the evaluation of a homology class at the volume form.

A crucial step in the proof – controlling volume

Lemma

For any geodesic simplex σ with $vol(\sigma) \approx v_{max}$ we have

$$\int_X \int_{\Gamma \backslash G} \operatorname{vol}(\psi_{\mathsf{X}}(g\sigma)) d\mu_{\mathsf{X}}(x) d\mu_{\Gamma \backslash G}(g) \approx \operatorname{vol}(\sigma).$$

Volume and degree 1 maps

Let $f: M \to M$ be a degree 1 map. Let $c = \sum a_i \sigma_i$ be an *n*-cycle. Then:

$$\sum a_i \operatorname{vol^{or}}(\sigma_i) = \sum a_i \operatorname{vol^{or}}(f(\sigma)).$$

- Find suitable homology theories for our situation.
- Show that $\psi: X \to \operatorname{map}(\widetilde{M}, \widetilde{M})$ is of degree 1.
- View left side of lemma as the evaluation of a homology class at the volume form.

A crucial step in the proof – controlling volume

Lemma

For any geodesic simplex σ with $vol(\sigma) \approx v_{max}$ we have

$$\int_X \int_{\Gamma \backslash G} \operatorname{vol}(\psi_{\mathsf{x}}(g\sigma)) d\mu_{\mathsf{X}}(x) d\mu_{\Gamma \backslash G}(g) \approx \operatorname{vol}(\sigma).$$

Volume and degree 1 maps

Let $f: M \to M$ be a degree 1 map. Let $c = \sum a_i \sigma_i$ be an *n*-cycle. Then:

$$\sum a_i \operatorname{vol^{or}}(\sigma_i) = \sum a_i \operatorname{vol^{or}}(f(\sigma)).$$

- Find suitable homology theories for our situation.
- Show that $\psi: X \to \operatorname{map}(\widetilde{M}, \widetilde{M})$ is of degree 1.
- View left side of lemma as the evaluation of a homology class at the volume form.

l¹-homology and induced maps

Remarks

- $L^1(X;\mathbb{Z}) \otimes_{\mathbb{Z}\Gamma} C^{\mathrm{geo}}_*(\widetilde{M}) = \bigoplus_F L^1(X;\mathbb{Z})$
- Vertical maps are inclusions of orbits.
- $C_0(\alpha)(1 \otimes \gamma) = \sum \chi_{X_i} \otimes \gamma_i$ where $\alpha(x, \gamma) = \gamma_i$ constant on $x \in X_i$.

A new deformation-rigidity phenomenon

Integrality, Poincare duality, simplicial volume

We have by Poincare duality and ergodicity

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma}C_*^{\mathrm{geo}}(\widetilde{M}))\ \cong H^0(\widetilde{M};L^1(X;\mathbb{Z}))=L^1(X;\mathbb{Z})^\Gamma\ \cong \mathbb{Z}.$$

Since the simplicial volume of M is > 0 every Cauchy sequence of cycles in $L^1(X;\mathbb{Z}) \otimes_{\mathbb{Z}\Gamma} C_n^{\mathrm{geo}}(\widetilde{M})$ is eventually constant!

Sobolev homology and I¹-condition

Under I^1 -integrability, we show that $H_n(\phi)$ already lands in

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma}C_*^{\mathrm{geo}}(\widetilde{M}))\subset H_n(\overline{L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma}C_*^{\mathrm{geo}}(\widetilde{M})}^1$$

For this we use a new tool (Sobolev homology) and the ability to subdivide geodesic simplices in negative curvature very efficiently.

A new deformation-rigidity phenomenon

Integrality, Poincare duality, simplicial volume

We have by Poincare duality and ergodicity

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma}C_*^{\mathrm{geo}}(\widetilde{M}))\ \cong H^0(\widetilde{M};L^1(X;\mathbb{Z}))=L^1(X;\mathbb{Z})^\Gamma\ \cong \mathbb{Z}.$$

Since the simplicial volume of M is > 0 every Cauchy sequence of cycles in $L^1(X;\mathbb{Z}) \otimes_{\mathbb{Z}\Gamma} C_n^{\mathrm{geo}}(\widetilde{M})$ is eventually constant!

Sobolev homology and I¹-condition

Under I^1 -integrability, we show that $H_n(\phi)$ already lands in

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma} C_*^{\mathrm{geo}}(\widetilde{M}))\subset H_n(\overline{L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma} C_*^{\mathrm{geo}}(\widetilde{M})}^1)$$

For this we use a new tool (Sobolev homology) and the ability to subdivide geodesic simplices in negative curvature very efficiently.

A new deformation-rigidity phenomenon

Integrality, Poincare duality, simplicial volume

We have by Poincare duality and ergodicity

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma}C_*^{\mathrm{geo}}(\widetilde{M}))\ \cong H^0(\widetilde{M};L^1(X;\mathbb{Z}))=L^1(X;\mathbb{Z})^\Gamma\ \cong \mathbb{Z}.$$

Since the simplicial volume of M is > 0 every Cauchy sequence of cycles in $L^1(X;\mathbb{Z}) \otimes_{\mathbb{Z}\Gamma} C_n^{\mathrm{geo}}(\widetilde{M})$ is eventually constant!

Sobolev homology and I1-condition

Under I^1 -integrability, we show that $H_n(\phi)$ already lands in

$$H_n(L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma} C_*^{\mathrm{geo}}(\widetilde{M}))\subset H_n(\overline{L^1(X;\mathbb{Z})\otimes_{\mathbb{Z}\Gamma} C_*^{\mathrm{geo}}(\widetilde{M})}^1)$$

For this we use a new tool (Sobolev homology) and the ability to subdivide geodesic simplices in negative curvature very efficiently.