A new tool for computing L^2-Betti numbers of groups

Roman Sauer Andreas Thom

1University of Chicago

2University of Göttingen

Banff, July 2007
\textbf{Definition for Riemannian manifolds (Atiyah)}

Let $\tilde{M} \to M$ be the universal covering, and let $\mathcal{F} \subset \tilde{M}$ be a $\pi_1(M)$-fundamental domain. Then define

$$b^{(2)}_p(\tilde{M} : \pi_1(M)) = \int_{\mathcal{F}} \text{tr}_C e^{-t\Delta_p}(x, x) d\text{vol}(x).$$

\textbf{Simplicial definition (Dodziuk)}

For a (finite) simplicial complex K with $\Gamma = \pi_1(K)$, define $b^{(2)}_p(\tilde{K} : \Gamma)$ as the Murray-von Neumann dimension of the Hilbert Γ-module

$$\bar{H}^p(\tilde{K}, l^2(\Gamma)).$$

For a group Γ we set $b^{(2)}_p(\Gamma) = b^{(2)}_p(\mathcal{E}\Gamma : \Gamma)$.
Definition for Riemannian manifolds (Atiyah)

Let $\tilde{M} \to M$ be the universal covering, and let $\mathcal{F} \subset \tilde{M}$ be a $\pi_1(M)$-fundamental domain. Then define

$$b_{p}^{(2)}(\tilde{M} : \pi_1(M)) = \int_{\mathcal{F}} \text{tr}_C e^{-t\Delta_p}(x, x) dvol(x).$$

Simplicial definition (Dodziuk)

For a (finite) simplicial complex K with $\Gamma = \pi_1(K)$, define $b_{p}^{(2)}(\tilde{K} : \Gamma)$ as the Murray-von Neumann dimension of the Hilbert Γ-module $\bar{H}^p(\tilde{K}, l^2(\Gamma))$.

For a group Γ we set $b_{p}^{(2)}(\Gamma) = b_{p}^{(2)}(E\Gamma : \Gamma)$.
Lück and Farber defined different algebraic definitions to extend the L^2-Betti numbers to arbitrary Γ-spaces and groups. Lück’s machinery allows the use of standard spectral sequences to compute L^2-Betti numbers.

Gaboriau defined $b_p^{(2)}(R)$ for a measured equivalence relation R. Later on, generalization to discrete measured groupoids.

Example: Orbit equivalence relation of $\Gamma \curvearrowright (X, \mu)$, where (X, μ) is a probability space. In this case, $b_p^{(2)}(R) = b_p^{(2)}(\Gamma)$. Any infinite amenable group is orbit equivalent to \mathbb{Z}.

Connes-Shlyakhtenko defined $b_p^{(2)}(A)$ for an arbitrary finite von Neumann algebra A.

Widening the scope of L^2-Betti numbers
Lück and Farber defined different algebraic definitions to extend the L^2-Betti numbers to arbitrary Γ-spaces and groups. Lück’s machinery allows the use of standard spectral sequences to compute L^2-Betti numbers.

Gaboriau defined $b^{(2)}_p(\mathcal{R})$ for a measured equivalence relation \mathcal{R}. Later on, generalization to discrete measured groupoids.

Example: Orbit equivalence relation of $\Gamma \curvearrowright (X, \mu)$, where (X, μ) is a probability space. In this case, $b^{(2)}_p(\mathcal{R}) = b^{(2)}_p(\Gamma)$. Any infinite amenable group is orbit equivalent to \mathbb{Z}.

Connes-Shlyakhtenko defined $b^{(2)}_p(\mathcal{A})$ for an arbitrary finite von Neumann algebra \mathcal{A}.
Lück and Farber defined different algebraic definitions to extend the L^2-Betti numbers to arbitrary Γ-spaces and groups. Lück’s machinery allows the use of standard spectral sequences to compute L^2-Betti numbers.

Gaboriau defined $b_{\rho}^{(2)}(\mathcal{R})$ for a measured equivalence relation \mathcal{R}. Later on, generalization to discrete measured groupoids.

Example: Orbit equivalence relation of $\Gamma \curvearrowright (X, \mu)$, where (X, μ) is a probability space. In this case, $b_{\rho}^{(2)}(\mathcal{R}) = b_{\rho}^{(2)}(\Gamma)$. Any infinite amenable group is orbit equivalent to \mathbb{Z}.

Connes-Shlyakhtenko defined $b_{\rho}^{(2)}(A)$ for an arbitrary finite von Neumann algebra A.
von Neumann algebras and dimension theory

Finite von Neumann algebras

- Finite von Neumann algebras are weakly closed \ast-subalgebras of some $\mathcal{B}(H)$ with a finite trace tr which has the trace property $\text{tr}(ab) = \text{tr}(ba)$.
- $L^\infty(X, \mu)$ with $\text{tr}(f) = \int_X f d\mu$
- group von Neumann algebra: $L(\Gamma) = \mathcal{B}(l^2\Gamma)^\Gamma$ (Γ-equivariant bounded operators) with trace $\text{tr}(a) = \langle a(1), 1 \rangle$.

Dimension function for arbitrary modules (Lück)

There exists an additive dimension function

$$\dim_A : \{A\text{-modules}\} \to [0, \infty]$$

such that if $p \in A$ is a projection then $\dim_A(\mathcal{A}p) = \text{tr}_A(p)$.
Finite von Neumann algebras

- Finite von Neumann algebras are weakly closed \ast-subalgebras of some $\mathcal{B}(H)$ with a finite trace tr which has the trace property $\text{tr}(ab) = \text{tr}(ba)$.
- $L^\infty(X, \mu)$ with $\text{tr}(f) = \int_X fd\mu$
- group von Neumann algebra: $L(\Gamma) = \mathcal{B}(l^2\Gamma)\Gamma$ (Γ-equivariant bounded operators) with trace $\text{tr}(a) = \langle a(1), 1 \rangle$.

Dimension function for arbitrary modules (Lück)

There exists an additive dimension function

$$\dim_A : \{A\text{-modules}\} \to [0, \infty]$$

such that if $p \in A$ is a projection then $\dim_A(Ap) = \text{tr}_A(p)$.

von Neumann algebras and dimension theory
Discrete measured groupoids

Please don’t! Discrete measured groupoids can be used effectively to compute L^2-Betti numbers of groups.
Discrete measured groupoids

Examples
- **translation groupoid** $X \ltimes \Gamma$ of a μ-preserving action $\Gamma \rhd (X, \mu)$. If the action is free then $X \ltimes \Gamma$ is the orbit equivalence relation.
- **holonomy groupoids** of measured foliations (restricted to a transversal)

Groupoid ring and von Neumann algebra of a groupoid \mathcal{G}
- **Groupoid ring** $\mathbb{C}\mathcal{G}$ consists of finitely supported Borel functions $\mathcal{G} \to \mathbb{C}$ equipped with a convolution product. $L^\infty(\mathcal{G}^0)$ is $\mathbb{C}\mathcal{G}$-module.
- $\mathbb{C}\mathcal{G}$ carries a trace, and its von Neumann algebra completion is denoted by $L(\mathcal{G})$.
- If \mathcal{G} is the orbit equivalence relation of $\Gamma \rhd (X, \mu)$ then $\mathbb{C}\mathcal{G}$ consists of $X \times X$-matrices whose rows and columns only have finitely many elements.
Discrete measured groupoids

Examples

- translation groupoid $X \rtimes \Gamma$ of a μ-preserving action $\Gamma \curvearrowright (X, \mu)$. If the action is free then $X \rtimes \Gamma$ is the orbit equivalence relation.
- holonomy groupoids of measured foliations (restricted to a transversal)

Groupoid ring and von Neumann algebra of a groupoid \mathcal{G}

- Groupoid ring $\mathbb{C}\mathcal{G}$ consists of finitely supported Borel functions $\mathcal{G} \to \mathbb{C}$ equipped with a convolution product. $L^\infty(\mathcal{G}^0)$ is $\mathbb{C}\mathcal{G}$-module.
- $\mathbb{C}\mathcal{G}$ carries a trace, and its von Neumann algebra completion is denoted by $L(\mathcal{G})$.
- If \mathcal{G} is the orbit equivalence relation of $\Gamma \curvearrowright (X, \mu)$ then $\mathbb{C}\mathcal{G}$ consists of $X \times X$-matrices whose rows and columns only have finitely many elements.
Precise Definitions

All discrete groups (Lück)

\[b_p^{(2)}(\Gamma) = \dim_{L(\Gamma)} H_p(\Gamma, L(\Gamma)) = \dim_{L(\Gamma)} \text{Tor}_p^{C\Gamma}(\mathbb{C}, L(\Gamma)) \in [0, \infty]. \]

Measured groupoids (S.)

\[b_p^{(2)}(G) = \dim_{L(G)} \text{Tor}_p^{C\Gamma}(L^{\infty}(G^0), L(G)) \in [0, \infty]. \]

Finite von Neumann algebras (Connes-Shlyakhtenko)

\[b_p^{(2)}(A) = \dim_{A \otimes A^{\text{op}}} \text{Tor}_p^{A \otimes A^{\text{op}}}(A, A \otimes A^{\text{op}}) \in [0, \infty]. \]
Precise Definitions

All discrete groups (Lück)

\[b_p^{(2)}(\Gamma) = \dim_{L(\Gamma)} H_p(\Gamma, L(\Gamma)) = \dim_{L(\Gamma)} \text{Tor}_p^{C\Gamma} (\mathbb{C}, L(\Gamma)) \in [0, \infty]. \]

Measured groupoids (S.)

\[b_p^{(2)}(\mathcal{G}) = \dim_{L(\mathcal{G})} \text{Tor}_p^{C\mathcal{G}} (L^\infty (\mathcal{G}^0), L(\mathcal{G})) \in [0, \infty]. \]

Finite von Neumann algebras (Connes-Shlyakhtenko)

\[b_p^{(2)}(\mathcal{A}) = \dim_{\mathcal{A} \otimes \mathcal{A}^{op}} \text{Tor}_p^{\mathcal{A} \otimes \mathcal{A}^{op}} (\mathcal{A}, \mathcal{A} \otimes \mathcal{A}^{op}) \in [0, \infty] \]
Precise Definitions

All discrete groups (Lück)

$$b_p^{(2)}(\Gamma) = \dim_{L(\Gamma)} H_p(\Gamma, L(\Gamma)) = \dim_{L(\Gamma)} \text{Tor}_{p}^{C\Gamma}(\mathbb{C}, L(\Gamma)) \in [0, \infty].$$

Measured groupoids (S.)

$$b_p^{(2)}(\mathcal{G}) = \dim_{L(\mathcal{G})} \text{Tor}_{p}^{\mathcal{C}\mathcal{G}}(L^\infty(\mathcal{G}^0), L(\mathcal{G})) \in [0, \infty].$$

Finite von Neumann algebras (Connes-Shlyakhtenko)

$$b_p^{(2)}(\mathcal{A}) = \dim_{\mathcal{A} \overline{\otimes} \mathcal{A}^{op}} \text{Tor}_{p}^{\mathcal{A} \otimes \mathcal{A}^{op}}(\mathcal{A}, \mathcal{A} \overline{\otimes} \mathcal{A}^{op}) \in [0, \infty].$$
The following theorem was first proved by Gaboriau for a different definition of L^2-Betti numbers (Cheeger-Gromov type rather than homological algebra).

Theorem

For any μ-preserving Γ-action on a probability space (X, μ),

$$b_p^{(2)}(\Gamma) = b_p^{(2)}(X \rtimes \Gamma) \text{ for all } p \geq 0.$$

Optimistic conjecture

For every countable group one has

$$b_p^{(2)}(\Gamma) = b_p^{(2)}(L(\Gamma)) \text{ for all } p \geq 0.$$
The following theorem was first proved by Gaboriau for a different definition of L^2-Betti numbers (Cheeger-Gromov type rather than homological algebra).

Theorem

For any μ-preserving Γ-action on a probability space (X, μ),

$$b_p^{(2)}(\Gamma) = b_p^{(2)}(X \rtimes \Gamma) \text{ for all } p \geq 0.$$

Optimistic conjecture

For every countable group one has

$$b_p^{(2)}(\Gamma) = b_p^{(2)}(L(\Gamma)) \text{ for all } p \geq 0.$$
Spectral sequence computations for $b_p^{(2)}(\Gamma)$

Hochschild-Serre spectral sequence

..computes $H_p(\Gamma; L(\Gamma))$ from Λ and Q for an extension

$$1 \to \Lambda \to \Gamma \to Q \to 1.$$

$E_2^{p,q} = H_p(Q, H_q(\Lambda, L(\Gamma)))$

$E_1^{p,q} = P_p \otimes_{\mathbb{C}Q} H_q(\Lambda, L(\Gamma))$ where $\mathbb{C} \leftarrow P_*$ projective $\mathbb{C}Q$-resolution.

Discouraging remark about "compute"

It is extremely hard if the spectral sequence does not collapse!

Prototype vanishing result

Assume $b_p^{(2)}(\Lambda) = 0$ for $p > m$. Then $b_k^{(2)}(\Gamma) = 0$ for $k > m + \text{cd}_{\mathbb{C}}(Q)$.
Spectral sequence computations for $b_p^{(2)}(\Gamma)$

Hochschild-Serre spectral sequence

..computes $H_p(\Gamma; L(\Gamma))$ from Λ and Q for an extension

\[1 \to \Lambda \to \Gamma \to Q \to 1. \]

\[E^2_{p,q} = H_p(Q, H_q(\Lambda, L(\Gamma))) \]

\[E^1_{p,q} = P_p \otimes_{\mathbb{C}Q} H_q(\Lambda, L(\Gamma)) \text{ where } \mathbb{C} \leftarrow P_* \text{ projective } \mathbb{C}Q\text{-resolution.} \]

Discouraging remark about "compute"

It is extremely hard if the spectral sequence does not collapse!

Prototype vanishing result

Assume $b_p^{(2)}(\Lambda) = 0$ for $p > m$. Then $b_k^{(2)}(\Gamma) = 0$ for $k > m + \text{cd}_{\mathbb{C}}(Q)$.
Hochschild-Serre spectral sequence

..computes $H_p(\Gamma; L(\Gamma))$ from Λ and Q for an extension

$$1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow Q \rightarrow 1.$$

$E^2_{p,q} = H_p(Q, H_q(\Lambda, L(\Gamma)))$

$E^1_{p,q} = P_p \otimes_{\mathbb{C}Q} H_q(\Lambda, L(\Gamma))$ where $\mathbb{C} \leftarrow P_\ast$ projective $\mathbb{C}Q$-resolution.

Discouraging remark about "compute"

It is extremely hard if the spectral sequence does not collapse!

Prototype vanishing result

Assume $b_p^{(2)}(\Lambda) = 0$ for $p > m$. Then $b_k^{(2)}(\Gamma) = 0$ for $k > m + \text{cd}_{\mathbb{C}}(Q)$.
Consider \(\Gamma \bowtie (X, \mu) \). Projective \(\mathbb{C}(X \rtimes \Gamma) \)-resolutions of \(L^\infty(X) \) can be used to compute \(b_p^{(2)}(X \rtimes \Gamma) = b_p^{(2)}(\Gamma) \).

Unfortunately, \(\mathbb{C}(X \rtimes \Gamma) \otimes_{\mathbb{C}\Gamma} - \) is not exact.

The following functor is exact and preserves projectives:

\[
\begin{array}{ccc}
\{\mathbb{C}\Gamma\text{-modules}\} & \otimes & \{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\} \\
\downarrow & & \downarrow \text{pr} \\
\{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\}/\{M; \dim_{L^\infty(X)} M = 0\}
\end{array}
\]

The trivial module \(\mathbb{C} \) is mapped to \(L^\infty(X) \).

The projective dimension of \(L^\infty(X) \) is often smaller than \(\text{cd}_{\mathbb{C}}(\Gamma) \) in the quotient category.
Consider $\Gamma \acts (X, \mu)$. Projective $\mathbb{C}(X \rtimes \Gamma)$-resolutions of $L^\infty(X)$ can be used to compute $b_p^{(2)}(X \rtimes \Gamma) = b_p^{(2)}(\Gamma)$.

Unfortunately, $\mathbb{C}(X \rtimes \Gamma) \otimes_{\mathbb{C}\Gamma} -$ is not exact.

The following functor is exact and preserves projectives:

$$\{\mathbb{C}\Gamma\text{-modules}\} \otimes \rightarrow \{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\}$$

$$\downarrow_{\text{pr}}$$

$$\{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\}/\{M; \dim_{L^\infty(X)} M = 0\}$$

The trivial module \mathbb{C} is mapped to $L^\infty(X)$.

The projective dimension of $L^\infty(X)$ is often smaller than $\text{cd}_{\mathbb{C}}(\Gamma)$ in the quotient category.
Consider $\Gamma \acts (X, \mu)$. Projective $\mathbb{C}(X \rtimes \Gamma)$-resolutions of $L^\infty(X)$ can be used to compute $b_p^{(2)}(X \rtimes \Gamma) = b_p^{(2)}(\Gamma)$.

Unfortunately, $\mathbb{C}(X \rtimes \Gamma) \otimes_{\mathbb{C}\Gamma} -$ is not exact.

The following functor is exact and preserves projectives:

$$\{\mathbb{C}\Gamma\text{-modules}\} \otimes \rightarrow \{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\} \downarrow \text{pr}$$

$$\{\mathbb{C}(X \rtimes \Gamma)\text{-modules}\}/\{M; \dim_{L^\infty(X)} M = 0\}$$

The trivial module \mathbb{C} is mapped to $L^\infty(X)$.

The **projective dimension** of $L^\infty(X)$ is often smaller than $\text{cd}_{\mathbb{C}}(\Gamma)$ in the quotient category.
For any infinite amenable group and $\Gamma \curvearrowright (X, \mu)$, $L^\infty(X)$ has a length 1 projective resolution in the quotient category (Connes-Feldman-Weiss)

The same holds for finite products of infinite amenable groups (Gaboriau).

More generally, Lattices in the same locally compact group have Morita equivalent quotient categories for suitable actions.

Let Γ be a uniform lattice in semi-simple G with finite center and no compact factors. For suitable $\Gamma \curvearrowright (X, \mu)$, the projective dimension of $L^\infty(X)$ in the quotient category is

$$\dim(G/K) - (\mathbb{R}\text{-rank of } G)$$

whereas $\text{cd}_\mathbb{C}(\Gamma) = \dim(G/K)$.
For any infinite amenable group and $\Gamma \curvearrowleft (X, \mu)$, $L^\infty(X)$ has a length 1 projective resolution in the quotient category (Connes-Feldman-Weiss).

The same holds for finite products of infinite amenable groups (Gaboriau).

More generally, Lattices in the same locally compact group have Morita equivalent quotient categories for suitable actions.

Let Γ be a uniform lattice in semi-simple G with finite center and no compact factors. For suitable $\Gamma \curvearrowleft (X, \mu)$, the projective dimension of $L^\infty(X)$ in the quotient category is

$$\dim(G/K) - (\mathbb{R}\text{-rank of } G)$$

whereas $\text{cd}_C(\Gamma) = \dim(G/K)$.
For any infinite amenable group and $\Gamma \curvearrowright (X, \mu)$, $L^\infty(X)$ has a length 1 projective resolution in the quotient category (Connes-Feldman-Weiss).

The same holds for finite products of infinite amenable groups (Gaboriau).

More generally, lattices in the same locally compact group have Morita equivalent quotient categories for suitable actions.

Let Γ be a uniform lattice in semi-simple G with finite center and no compact factors. For suitable $\Gamma \curvearrowright (X, \mu)$, the projective dimension of $L^\infty(X)$ in the quotient category is

$$\dim(G/K) - (\mathbb{R}\text{-rank of } G)$$

whereas $\text{cd}_\mathbb{C}(\Gamma) = \dim(G/K)$.
Short exact sequence

We define (slightly generalizing Feldman-Sutherland-Zimmer) the notion of a **short exact sequence** for discrete measured groupoids

\[1 \to G_1 \to G_2 \to G_3 \to 1. \]

It’s probably what you think it is plus ergodicity of \(G_1 \) with respect to almost every disintegration measure.

Informal theorem

- There is some graded \(\mathcal{U}(G_2) \)-module whose dimension equals \(b_\ast^{(2)}(G_2) \).

- There is a spectral sequence in terms of data of \(G_1 \) and \(G_2 \) that converges to this graded module.
Spectral sequence for discrete measured groupoids

Short exact sequence

We define (slightly generalizing Feldman-Sutherland-Zimmer) the notion of a short exact sequence for discrete measured groupoids

\[1 \to G_1 \to G_2 \to G_3 \to 1. \]

It’s probably what you think it is plus ergodicity of \(G_1 \) with respect to almost every disintegration measure.

Informal theorem

- There is some graded \(\mathcal{U}(G_2) \)-module whose dimension equals \(b_2^*(G_2) \).
- There is a spectral sequence in terms of data of \(G_1 \) and \(G_2 \) that converges to this graded module.
The following theorem was proved under the additional assumptions on Γ/Λ (Lück) or the degree $d = 1$ (Gaboriau) before.

Theorem

Let $\Lambda \subset \Gamma$ be a normal subgroup of infinite index. If $b_p^{(2)}(\Lambda) = 0$ for $0 \leq p \leq d - 1$ and $b_d^{(2)}(\Lambda) < \infty$ then $b_p^{(2)}(\Gamma) = 0$ for $0 \leq p \leq d$.

Theorem

Consider $1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow Q_0 \rightarrow 1$. Let

$$b_p^{(2)}(\Lambda) = 0 \text{ for } p > m.$$

Let Q_0 be measure equivalent to Q_1 (for example, Q_0, Q_1 lattices in the same locally compact group). Then

$$b_p^{(2)}(\Gamma) = 0 \text{ for } p > m + \text{cd}_C(Q_1).$$
The following theorem was proved under the additional assumptions on Γ/Λ (Lück) or the degree $d = 1$ (Gaboriau) before.

Theorem

Let $\Lambda \subset \Gamma$ be a normal subgroup of infinite index. If $b_p^{(2)}(\Lambda) = 0$ for $0 \leq p \leq d - 1$ and $b_d^{(2)}(\Lambda) < \infty$ then $b_p^{(2)}(\Gamma) = 0$ for $0 \leq p \leq d$.

Theorem

Consider $1 \rightarrow \Lambda \rightarrow \Gamma \rightarrow Q_0 \rightarrow 1$. Let

$$b_p^{(2)}(\Lambda) = 0 \text{ for } p > m.$$

Let Q_0 be measure equivalent to Q_1 (for example, Q_0, Q_1 lattices in the same locally compact group). Then

$$b_p^{(2)}(\Gamma) = 0 \text{ for } p > m + \text{cd}_C(Q_1).$$
Let M be a closed aspherical $2n$-dimensional manifold that satisfies the Hopf-Singer conjecture, that is $b_p^{(2)}(\tilde{M}) = 0$ unless $p = n$. Let F be a finite set of integers ≥ 2. If N is the total space of a fiber bundle

$$M \rightarrow N \rightarrow \prod_{g \in F} \Sigma g$$

then N satisfies the Hopf-Singer conjecture.

- Let $m = \# F$. Note that $\prod_{g \in F} \Sigma g$ and $\prod_{g \in F} SL(2, \mathbb{Z})$ are lattices in the same Lie group; The latter has $cd_{\mathbb{C}} = m$.

- $\Rightarrow b_p^{(2)}(\tilde{N}) = b_p^{(2)}(\Gamma) = 0$ for $p > m + n$.

- By Poincare duality, $b_p^{(2)}(\tilde{N}) = 0$ unless $p = m + n$.
Theorem

Let M be a closed aspherical $2n$-dimensional manifold that satisfies the Hopf-Singer conjecture, that is $b_p^{(2)}(\tilde{M}) = 0$ unless $p = n$. Let F be a finite set of integers ≥ 2. If N is the total space of a fiber bundle

$$M \to N \to \prod_{g \in F} \Sigma_g$$

then N satisfies the Hopf-Singer conjecture.

- Let $m = \# F$. Note that $\prod_{g \in F} \Sigma_g$ and $\prod_{g \in F} SL(2, \mathbb{Z})$ are lattices in the same Lie group; The latter has $cd_C = m$.
- $\Rightarrow b_p^{(2)}(\tilde{N}) = b_p^{(2)}(\Gamma) = 0$ for $p > m + n$.
- By Poincare duality, $b_p^{(2)}(\tilde{N}) = 0$ unless $p = m + n$.
By applying the spectral sequence to

$$1 \rightarrow G^{iso} \rightarrow G \rightarrow G^{equiv} \rightarrow 1$$

we obtain:

Theorem

Consider $\Gamma \bowtie (X, \mu)$. If the L^2-Betti numbers of almost every stabilizer vanish then also the L^2-Betti numbers of Γ.

The following is related to earlier results of Feldman, Sutherland and Zimmer, who prove a similar result for lattices in semi-simple groups.

Theorem

Let $b_p^{(2)}(\Gamma) \neq 0$ for some $p \geq 0$. The orbit equivalence relation of any free $\Gamma \bowtie (X, \mu)$ has no infinite, normal amenable subrelation.
By applying the spectral sequence to

$$1 \rightarrow G^{iso} \rightarrow G \rightarrow G^{equiv} \rightarrow 1$$

we obtain:

Theorem

*Consider $\Gamma \curvearrowright (X, \mu)$. If the L^2-Betti numbers of almost every stabilizer vanish then also the L^2-Betti numbers of Γ.***

The following is related to earlier results of Feldman, Sutherland and Zimmer, who prove a similar result for lattices in semi-simple groups.

Theorem

Let $b^{(2)}_p(\Gamma) \neq 0$ for some $p \geq 0$. The orbit equivalence relation of any free $\Gamma \curvearrowright (X, \mu)$ has no infinite, normal amenable subrelation.
In a first non-trivial step we show that $b_p^{(2)}(G)$ is the $\mathcal{U}(G)$-dimension of the derived functor of the left exact functor

$$
\left\{ \mathcal{C}G\text{-modules} \right\}/\left\{ M; \dim_{L\infty}(G^0) M = 0 \right\} \rightarrow \{ \text{abelian groups} \}
$$

$M \mapsto \text{hom}(L(G^0), M)$.

evaluated at $\mathcal{U}(G)$.

It is possible to write F as a composition of two functors. The desired spectral sequence is a Grothendieck spectral sequence with respect to that composition.

The analysis is well hidden behind the algebra. But showing that F is the composition of the right functors is the real work.

Question: What about L^2-Betti numbers of von Neumann algebras?
In a first non-trivial step we show that $b_p^{(2)}(G)$ is the $\mathcal{U}(G)$-dimension of the derived functor of the left exact functor

$$\{\mathbb{C}G\text{-modules}\}/\{M; \dim_{L^{\infty}(G^0)} M = 0\} \rightarrow \{\text{abelian groups}\}$$

$$M \mapsto \text{hom}(L(G^0), M).$$

evaluated at $\mathcal{U}(G)$.

It is possible to write F as a composition of two functors. The desired spectral sequence is a Grothendieck spectral sequence with respect to that composition.

The analysis is well hidden behind the algebra. But showing that F is the composition of the right functors is the real work.

Question: What about L^2-Betti numbers of von Neumann algebras?
In a first non-trivial step we show that $b_p^{(2)}(G)$ is the $U(G)$-dimension of the derived functor of the left exact functor

$$\{\mathbb{C}G\text{-modules}\}/\{M; \dim_{\mathcal{L}^\infty(G^0)} M = 0\} \to \{\text{abelian groups}\}$$

$$M \mapsto \text{hom}(\mathcal{L}(G^0), M).$$

evaluated at $U(G)$.

It is possible to write F as a composition of two functors. The desired spectral sequence is a Grothendieck spectral sequence with respect to that composition.

The analysis is well hidden behind the algebra. But showing that F is the composition of the right functors is the real work.

Question: What about L^2-Betti numbers of von Neumann algebras?
In a first non-trivial step we show that $b^{(2)}_p(G)$ is the $\mathcal{U}(G)$-dimension of the derived functor of the left exact functor

$$\frac{\mathbb{C}G\text{-modules}}{\{M; \dim_{L^\infty(G^0)} M = 0\}} \to \{\text{abelian groups}\}$$

$$M \mapsto \text{hom}(L(G^0), M).$$

evaluated at $\mathcal{U}(G)$.

It is possible to write F as a composition of two functors. The desired spectral sequence is a Grothendieck spectral sequence with respect to that composition.

The analysis is well hidden behind the algebra. But showing that F is the composition of the right functors is the real work.

Question: What about L^2-Betti numbers of von Neumann algebras?