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Abstract. We give a leisurely account of the relationship between volume and

L2-Betti numbers on closed, aspherical manifolds based on the results in [5] –

albeit with a different point of view. This paper grew out of a talk presented
at the first colloquium of the Courant Center in Göttingen in October 2007.

1. Review of L2-Betti numbers

The L2-Betti numbers of a closed Riemannian manifold, as introduced by Michael
Atiyah, are analytical invariants of the long-time behavior of the heat kernel of the
Laplacians of forms on the universal cover. We give a very brief review of these
invariants; for extensive information the reader is referred to the standard refer-
ence [3].

Let X̃ → X be the universal cover of a compact Riemannian manifold, and let
F ⊂ X̃ be a π1(X)-fundamental domain. Then Michael Atiyah defines the i-th
L2-Betti number in terms of the heat kernel on X̃ as

b
(2)
i (X) = lim

t→∞

∫
F

trC e
−t∆i(x, x)dvol(x).

Subsequently, simplicial and homological definitions of L2-Betti numbers were de-
veloped by Dodziuk, Farber, and Lück. An important consequence of the equiva-
lence of these definitions is the homotopy invariance of L2-Betti numbers.

Lück’s definition is based on a dimension function dimA(M) for arbitrary mod-
ules M over a finite von Neumann algebra A with trace tr : A → C. For example,
one has dimA(Ap) = tr(p). Lück proceeds then to define b(2)

i (X) for an arbitrary
space X with Γ = π1(X) as

(1.1) b
(2)
i (X) = dimL(Γ)Hi

(
L(Γ)⊗ZΓ C∗(X̃)

)
∈ [0,∞]

where L(Γ) is the group von Neumann algebra of Γ. Some of the most fundamental
properties of L2-Betti numbers are:

• π1(X) finite ⇒ b
(2)
i (X) = bi(X̃)/|π1(X)|

•
∑
i≥0(−1)ib(2)

i (X) = χ(X) =
∑
i≥0(−1)ibi(X).

• X̄ → X d-sheeted cover ⇒ b
(2)
i (X̄) = d · b(2)

i (X).
• If X is aspherical and π1(X) amenable then b

(2)
i (X) = 0.

• If X is a 2n-dimensional hyperbolic manifold then b
(2)
i (X) > 0 if and only

if i = n.
1
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2. Theorems relating volume and L2-Betti numbers

Assumption 2.1. Throughout this section, let M be an n-dimensional, closed,
aspherical manifold.

The inequality of Theorem 2.2 is stated by Mikhail Gromov [2, Section 5.33 on
p. 297] along with an idea1 which he attributes to Alain Connes. We provide the
first complete proof of that inequality [5, Corollary to Theorem A]. The rigorous im-
plementation of Gromov’s idea uses tools and ideas from Damien Gaboriau’s theory
of L2-Betti numbers of measured equivalence relations and spaces with groupoid
actions of such.

Theorem 2.2. If (M, g) has a lower Ricci curvature bound Ricci(M, g) ≥ −(n −
1)g, then

b
(2)
i (M) ≤ constn vol(M, g) for every i ≥ 0.

The minimal volume of a smooth manifoldN is defined as the infimum of volumes
of complete metrics on N whose sectional curvature is pinched between − 1 and 1.
We obtain the following

Corollary 2.3 (Minimal volume estimate).

b
(2)
i (M) ≤ constn minvol(M).

The following theorem [5, Theorem B] is a generalization of a well-known vanish-
ing result of Jeff Cheeger and Mikhail Gromov. Its connection to volume becomes
apparent through its corollary.

Theorem 2.4. If M is covered by open, amenable sets such that every point belongs
to at most n sets, then

b
(2)
i (M) = 0 for every i ≥ 0.

Here a subset U ⊂M is called amenable if π1(U) maps to an amenable subgroup
of π1(M). There is also a version of this theorem for arbitrary spaces [5, Theo-
rem C]. The following corollary is a non-trivial implication of the theorem above and
work of Mikhail Gromov [1, Section 3.4] where he constructs amenable coverings in
the presence of small volume.

Corollary 2.5. There is a constant εn > 0 only depending on n such that

minvol(M) < εn ⇒ b
(2)
i (M) = 0 for every i ≥ 0.

The results above are analogs of well-known theorems by Mikhael Gromov where
L2-Betti numbers are replaced by simplicial volume. Note however that the assump-
tion of asphericity is crucial here unlike in the case of the simplicial volume.

3. Idea of proof of the main theorem

We describe some ideas involved in the proof of Theorems 2.2 and 2.4. In Sub-
section 3.1 we describe a general technique of bounding (L2-)Betti numbers by
constructing suitable equivariant coverings on the universal cover. Since the as-
sumptions of our theorems are too weak to garantuee the existence of such covers
we need substantially modify this technique; the new tool runs under the name

1We refer to this idea as randomization.
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randomization, and it is explained in Subsection 3.2. A full proof based on ran-
domization is rather long and complicated; we explain instead an instructive toy
example in Subsection 3.4. A crucial property of L2-Betti numbers is described
in Subsection 3.3. We conclude this sketch of proof in Subsection 3.5 with some
remarks about other ingredients.

Throughout the section, we refer to Assumption 2.1.

3.1. How to bound L2-Betti numbers by equivariant coverings in general.
Let Γ = π1(M). Suppose we construct, under a certain geometrical assumption, a
Γ-equivariant open covering U of the universal cover M̃ . Let us say that U = {Ui}i∈I
is indexed by a free Γ-set set I, and we have γUi = Uγi. By a standard argument
(partition of unity) one obtains a Γ-equivariant map f from M̃ to the nerve of U .
The nerve is embedded in the full simplicial complex with index set I which we
denote by ∆(I). Let

Ω = map
(
M̃,∆(I)

)
be the space of continuous maps with the natural Γ-action. We may view f as an
element in ΩΓ, the subspace of Ω consisting of Γ-equivariant maps. Next we argue
that both the i-th Betti number and the L2-Betti number are bounded from above
by the number of equivariant i-simplices hit by f(M̃).

Let Fi be a set of Γ-representatives of the i-skeleton ∆(I)(i). For any g ∈ Ω, let
Ci(g) ∈ N be the number of i-simplices in Fi hit by f(M̃). We think of Ci as a
function

Ci : Ω→ Z.
Since M̃ is contractible, M is a model of the classifying space BΓ, and the uni-

versal property of EΓ, the universal cover of BΓ, implies that there is an equivariant
homotopy retract

M̃ f
// ∆(I)

��
.

Using the fact that the i-th L2-Betti number is bounded by the number of equi-
variant i-simplices and the fact that the L2-Betti number is some sort of dimension
(with nice properties) of a certain homology module (see (1.1)), we easily obtain
that

b
(2)
i (M) ≤ Ci(f).

By going to Γ-quotients we also obtain the same estimate for the usual Betti num-
bers. By Poincare duality it is actually enough to control Cn(f), and we have

(3.1) bi(M), b(2)
i (M) ≤ constn Cn(f)

for a constant constn only depending on n. This follows from [3, Example 14.28 on
p. 498] since the fundamental class of M can be written as a sum of at most Cn(f)
singular simplices.

So to get a good bound on b
(2)
i (M), we should find an equivariant cover U such

that for the resulting map f to the nerve the quantity Cn(f) is rather small.

3.2. Randomization. One directly sees the limitations of the above technique.
The trivial estimate Cn(f) ≥ 1 for any map f ∈ Ω prevents us from proving
the vanishing of the L2-Betti numbers. In particular, we cannot hope to prove
Theorems 2.2 and 2.4 using it.
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Next we phrase an idea of Mikhail Gromov (attributed to Alain Connes) in
probabilistic terms that modifies the above technique.

By changing the point of view a bit, we regard a map f ∈ ΩΓ that we sought
to construct before as a Γ-invariant point measure on the Borel space Ω. Instead
of trying to find a point measure f with small Cn(f), Gromov suggests to look for
Γ-invariant probability measures µ on Ω such that the expected value

E(Ω,µ)(Cn) =
∫

Ω

Cn(f)dµ(f) is sufficiently small.

We refer to the problem of finding a suitable probability measure as the ran-
domization problem. It turns out that in analogy to (3.1) one can actually show
that

(3.2) b
(2)
i (M) ≤ constn E(Ω,µ)(Cn) ∀i ≥ 0,

and that one can actually use the assumptions of Theorems 2.2 and 2.4 to con-
struct a Γ-invariant probability measure µ such that E(Ω,µ)(Cn) is smaller than
constn vol(M) in the case of Theorem 2.2 and arbitrarily small in the case of The-
orem 2.4, thus proving these theorems.

The construction of the latter will be explained in the toy case of M = S1 in
Subsection 3.4. A brief justification why (3.2) should hold follows next.

3.3. L2-Betti numbers and actions on probability spaces. One would have
to explain Damien Gaboriau’s language of R-simplicial complexes to give a proof
of the estimate b(2)

i (M) ≤ E(Ω,µ)(Ci). Instead, we want to at least point out that
the L2-Betti numbers of M can be computed by some sort of averaging over the
probability space (Ω, µ). In Lück’s algebraic definition averaging is reflected by
interpreting b

(2)
i (M) as the dimension of a certain induction of the homology of

M̃ with respect to a bigger von Neumann algebra, the so-called group measure
construction of (Ω, µ) and Γ.

The group measure space construction L∞(Ω, µ)oΓ is defined as a completion
of the algebraic crossed product L∞(X) o Γ with respect to the trace

tr
(∑

fγγ
)

=
∫

Ω

f1(x)dµ(x),

which is a sort of expected value. The group measure space construction contains
the group von Neumann algebra L(Γ) and L∞(Ω, µ) as subalgebras. The crucial
property is that

(3.3) b
(2)
i (M) = dimL∞(Ω,µ)oΓHi

(
L∞(Ω, µ)oΓ⊗ZΓ C∗(M̃)

)
For a proof of b(2)

i (M) ≤ const E(Ω,µ)(Ci) one would have to interpret the right hand
side of (3.3) in Gaboriau’s sense as L2-Betti numbers of the R-simplicial complex
Ω×M̃ . For the better estimate (3.2) one needs a Poincare duality argument (see [4]).

3.4. The toy case M = S1. We want to execute the proof of Theorem 2.4, as
presented in [5], for the example M = S1. Of course, M itself is an amenable set,
and we already know that its L2-Betti numbers vanish. But we want to illustrate the
construction of a Z-invariant probability measure µε on Ω such that the expected
value E(Ω,µε)(Ci) is smaller than a given ε > 0.
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Let Γ = Z. For the index set I we take I = Γ × {1, 2}. The measure µ on
Ω = map(M̃,∆(I)) will be obtained as the push-forward of the normalized Haar
measure µS1 of S1 under a certain Γ-equivariant map

φε : S1 → Ω.

Let m ∈ N be larger than 2ε−1. Let α ∈ [0, 1] be irrational with 0 < 1/m− α <
ε

2m . Equip S1 = R/Z with the ergodic rotation given by addition of α. Next
we define an equivariant cover U = {Ai × Ui}i∈I of S1 × R such that Ai ⊂ S1

are Borel sets and Ui ⊂ R are intervals of length m or 1. By definition, the map
φε(z) : R → ∆(I) is the nerve map associated to the cover {Ui; i ∈ I, z ∈ Ai} for
every z ∈ S1.

To describe U , consider the following picture2 of S1 × R, where we see the tile
[0, α]× [−2m+1,−m+1] on top. Set A(e,1) = [0, α] and U(e,1) = [−2m+1,−m+1].

R0−m

Next we consider the Γ-orbit {A(γ,1)×U(γ,1)} of the desribed tile in the following
pictures.

R0−m

R0−m

R0−m

R0−m

2I am grateful to Clara Löh for programming the pictures in Metafont.
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R0−m

R0−m

We almost obtain a partition of the cylinder S1 × R but because of mα < 1
the translates do not quite close up after m steps. We have to introduce another
tile (black in the picture) [1−mα]× [−m,−m+ 1] whose Γ-orbit {A(γ,2) ×U(γ,2)}
together with the orbit of the other tile partitions S1 × R.

R0−m

Finally we make the tiles just a little bit longer in the R-direction to obtain the
desired cover. We leave it to reader to verify that

E(Ω,(φε)∗µS1 )(C1) < 1−mα+ α < ε.

3.5. Final remarks. In the actual proof of Theorems 2.2 and 2.4 one constructs
suitable equivariant covers on the product of a Γ-probability space with M̃ , and then
proceeds similarly as in Subsection 3.4 to obtain the desired probability measure
on Ω. We want to mention the ingredients in the general case used to construct
such covers.

In the case of Theorem 2.2 one can construct covers on M̃ by balls of radius
0 < r < 1 with multiplicity < constn r−n coming from maximal packings of
concentric balls with smaller radii. This follows from the Bishop-Gromov inequality
which provides packing inequalities in the presence of a lower Ricci curvature bound.
In general, there is no way to obtain equivariant such covers. However, a suitable
randomization in the sense of Subsection 3.2 of the problem of the existence of
equivariant covers with small multiplicity can be solved, which leads to a proof of
Theorem 2.2.

In the case of Theorem 2.4 one applies the generalized Rokhlin lemma from
ergodic theory to construct covers similar to the one in the toy example over every
of the amenable subsets and combines them to a cover on the product of a Γ-
probablity space and M̃ .
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