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Abstract. We study power series over the group ring CF of a free
group F . We prove that the von Neumann trace maps rational power

series over CF to algebraic power series. Using the Riemann-Stieltjes

formula, we deduce the rationality and positivity of Novikov-Shubin
invariants of matrices over CF .

1. Introduction

The motivation for this paper is the following conjecture by J. Lott and
W. Lück [13, conjecture 7.1].

Conjecture. The Novikov-Shubin invariants of the universal covering of
a compact Riemannian manifold are positive rational unless they are ∞ or
∞+.

We say that the conjecture holds for the group G, if it is true for all
compact Riemannian manifolds with fundamental group G. The conjecture
for the group G is equivalent to each of the following two conjectures.
See [13, conjecture 7.2] and [14, p. 113, proof of 10.5 on p. 371].

Conjecture (Alternative Formulation 1).
The Novikov-Shubin invariants of a finite free G-CW complex are positive
rational unless they are ∞ or ∞+.

Conjecture (Alternative Formulation 2).
The Novikov-Shubin invariant of a matrix A ∈ Mn(ZG) over the integral
group ring of G is positive rational unless it is ∞ or ∞+.

The definition of Novikov-Shubin invariants of spaces resp. matrices is
reviewed below. The conjecture has been verified for abelian groups by J.
Lott [12, proposition 39 on p. 494] (see also [14, p.113]). In this case the
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value ∞ does not occur. So far, no group is known for which the conjecture
fails, but computations are rare. For virtually free groups, we settle the
conjecture in the positive in 3.6.

Theorem. The conjecture holds for virtually free groups, and the value ∞
does not occur in that case.

The general hope is to prove the conjecture for more classes of groups
and to provide an algebraic explanation for it in the spirit of Linnell’s proof
of the Atiyah conjecture [9, 10, 11]. Compared to the progress Linnell and
others made concerning the Atiyah conjecture, we are far away from pro-
viding an algebraic guideline for proving the conjecture for large classes of
groups. However, we link the conjecture to the following algebraic question.

Question. What is the complexity of the power series lying in the image
of the rational power series under the map

trCG : CGJzK → CJzK,
∑
n≥0

anz
n 7→

∑
n≥0

trN (G)(an)zn.

Here trN (G) is the von Neumann trace defined below. In 2.19 we prove
the following theorem.

Theorem. For a virtually free group G the map trCG sends rational power
series in CGJzK to algebraic power series in CJzK.

This statement reformulates and generalizes older algebraicity results for
certain power series, like the one associated to the Markov operator of free
groups. See example 2.21. The known methods in this context either consist
of ad-hoc combinatorial arguments, use Schützenberger’s theorem on the
Hadamard product [19, 6], which is related to formal language theory, or
employ Voiculescu’s theory of free probability [18]. We extend and refine the
method in [6], which uses Schützenberger’s theorem, to prove the preceding
theorem in its generality. Here we benefited from the exposition in [17].

In the next section we compile the necessary facts about noncommutative
power series and prove the preceding theorem. In the last section we show
how to deduce the rationality and positivity of Novikov-Shubin invariants
from that.
Let us now define our main objects of study. Let G be a group. The group
von Neumann algebra N (G) is obtained by completing the left regular
representation of CG on l2(G) with respect to the weak operator topology.
It is equipped with a finite normal faithful trace trN (G) : N (G) → C.
Restricted to CG the trace is given by trN (G)(

∑
g∈G λgg) = λe. The algebra

Mn(N (G)) of n × n-matrices over N (G) is again a finite von Neumann
algebra with trace trMn(N (G))((Aij)) = 1

n

∑n
i=1 trN (G)(Aii).
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Consider a self-adjoint operator A ∈ A in a finite von Neumann alge-
bra A with trace trA. We associate to it its family of spectral projections
EA

λ ∈ A, λ ∈ R, which are obtained by spectral calculus with respect to the
characteristic functions χ(−∞,λ]. The function FA(λ) = trA(EA

λ ) is called
the spectral density function of A. It is right-continuous. The spectral den-
sity function FA induces a compactly supported Borel probability measure
µA on R defined by

µA((λ, µ]) = FA(µ)− FA(λ).

The measure µA is called the spectral measure of A. Recall that µA({λ}) 6=
0 if and only if λ is an eigenvalue of A.

Definition. For an arbitrary operator A ∈ A the Novikov-Shubin invariant
α(A) ∈ [0,∞] ∪ {∞+} of A ∈ A is defined as

α(A) =

lim inf
λ→0+

ln(FA∗A(λ2)− FA∗A(0))
ln(λ)

∈ [0,∞]
if FA∗A(λ2) > FA∗A(0)

for λ > 0,
∞+ else.

Note that FA∗A(λ2) = FA(λ) if A is positive. The Novikov-Shubin in-
variants of a G-CW-complex are defined as the Novikov-Shubin invariants
of the differentials of its cellular chain complex. For details see [14].
The results of this article are contained in the author’s thesis [15]. I would
like to thank Wolfgang Lück for his continuous support and encourage-
ment. Further, I benefited from discussions with Thomas Schick and War-
ren Dicks.

2. Power Series in Noncommuting Variables

Before we deal with formal power series with noncommuting variables, let
us fix the notation in the commutative case.

The ring of formal power series over a (not necessarily commutative)
ring R in a set of variables X is denoted by RJXK. The ring of polynomials
is denoted by R[X]. Now suppose the coefficient ring k of kJXK is a com-
mutative field. An element in kJXK is invertible if and only if its constant
term is invertible, i.e. non-zero. The quotient field of the integral domain
k[X] of polynomials is denoted by k(X). The quotient field of the integral
domain kJXK, denoted by k((X)), contains both k(X) and kJXK. Let D be
an integral domain that contains k(X). Then P ∈ D is said to be algebraic
over k(X), if there exist p0, . . . , pd ∈ k(X), not all 0, such that

pdP
d + pd−1P

d−1 + · · ·+ p0 = 0.

By clearing denominators, the pi above can be assumed to be polynomials,
i.e. pi ∈ k[X]. The algebraic elements in D form a k(X)-subalgebra of D.
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The power series in kJXK ⊂ k((X)), which are algebraic over k(X), are
called algebraic (formal) power series. We denote the set of all algebraic
formal power series by kalgJXK.

Before we develop analogous notions for the non-commutative setting,
we have to recall some concepts from ring theory.

Definition 2.1 (Division Closure and Rational Closure).
Let S be a ring and R ⊂ S be a subring.

(i) R is division closed if for every element in R, which is invertible in S,
the inverse already lies in R.

(ii) R is rationally closed if for every matrix over R, which is invertible in
S, the entries of the inverse already lie in R.

(iii) The division closure of R in S denoted by D(R ⊂ S) is the smallest
division closed subring containing R.

(iv) The rational closure of R in S denoted by R(R ⊂ S) is the smallest
rationally closed subring containing R.

Note that the intersections of division closed resp. rationally closed sub-
rings is division resp. rationally closed. The rational closure has the advan-
tage that it can be explicitly described as follows (see [4, theorem 1.2 on
p. 383]).

Theorem 2.2 (Explicit Description of the Rational Closure).
Let R ⊂ S be a ring extension. Then s ∈ S is an element of R(R ⊂ S) if
and only if there is a matrix A ∈M(R) over R, which is invertible over S,
such that s is an entry of A−1 ∈ M(S). Further, s ∈ R(R ⊂ S) holds if
and only if there is a matrix A ∈Mn(R), which is invertible over S, and a
column vector b ∈ Rn such that s is a component of the solution u of the
matrix equation Au = b.

Consider a homomorphism φ : S1 → S2 of ring extensions R1 ⊂ S1,
R2 ⊂ S2, i.e. f restricts to f|R1 : R1 → R2. Then φ extends canonically to
a homomorphism M(φ) : M(S1) → M(S2), which restricts to the matrix
rings of R1, R2 respectively. Since M(φ) maps invertible elements in M(S1)
to invertible elements in M(S2), the preceding theorem implies the next
corollary.

Corollary 2.3. The rational closure is functorial with respect to homomor-
phisms of ring extensions, i.e. for a homomorphism f : S1 → S2 restricting
to the subrings R1 ⊂ S1, R2 ⊂ S2, we have φ(R(R1 ⊂ S1)) ⊂ R(R2 ⊂ S2).

Next we recall the concept of formal power series in noncommuting vari-
ables and fix some notation. LetX be a finite set, called an alphabet, and let
X∗ be the free monoid generated by the elements of X. Thus X∗ consists
of all finite words (strings) x1 . . . xn of elements in X including the empty
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word 1 ∈ X∗. The product in X∗ is given by concatenation of words. The
length of w = x1 . . . xn ∈ X∗ is given by n, that is the number of letters in
w. We write S+ for S−{1} where S ⊂ X∗, and we write X+ for X∗−{1}.

A (formal) power series in the set of noncommuting variables X over a
(not necessarily commutative) ring R is a function P : X∗ → R. We write
〈P,w〉 for P (w), and then use the suggestive notation

P =
∑

w∈X∗

〈P,w〉w.

The power series P is called a polynomial in X if it has finite support,
i.e. 〈P,w〉 6= 0 holds only for finitely many w ∈ X∗. The set of all formal
power series and all polynomials over R in X is denoted by R〈〈X〉〉, R〈X〉
respectively.

The set of formal power series over R in noncommuting variables has
a ring structure (even an R-algebra structure for commutative R). The
addition is componentwise and the product is given by( ∑

w∈X∗

aww

)
·

( ∑
w∈X∗

bww

)
=
∑

w∈X∗

(∑
uv=w

aubv

)
w.

The set of all polynomials R〈X〉 is a subring of R〈〈X〉〉. A term of the form
a ·w, a ∈ R, w ∈ X∗ is called a monomial, and the degree of a ·w is defined
as the length of w.

We say that a sequence P1, P2, . . . of formal power series converges to
P ∈ R〈〈X〉〉 if for every w ∈ X∗ there are only finitely many i ∈ N such that
〈Pi, w〉 6= 〈P,w〉. The augmentation homomorphism ε : R〈〈X〉〉 → R is the
ring map given by ε(P ) = 〈P, 1〉. In the commutative case ε : RJXK → R
is defined analogously. A formal power series P ∈ R〈〈X〉〉 is invertible if
and only if ε(P ) is invertible in R. In this case the inverse is given by the
convergent sum

P−1 =
∞∑

k=0

(1− ε(P )−1 · P )k · ε(P )−1.

The analogous statement holds for RJXK.
Notice that there is a canonical epimorphism φ : R〈〈X〉〉 → RJXK from

the formal power series ring in noncommuting variables to the one in com-
muting variables.

Definition 2.4 (Rational Power Series).
The rational closure R(R〈X〉 ⊂ R〈〈X〉〉) is called the ring of rational power
series over R in the noncommuting variables X, and it is denoted by
Rrat〈〈X〉〉. We define RratJXK analogously.
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The following theorem is an easy consequence of Gaussian elimination
and is certainly well known.

Theorem 2.5. Let R be an arbitrary ring, and X be a finite set. Then the
division closure D(R〈X〉 ⊂ R〈〈X〉〉) of the polynomials R〈X〉 in the ring of
formal power series R〈〈X〉〉 coincides with the rational closure R(R〈X〉 ⊂
R〈〈X〉〉). The analogous statement for RJXK also holds.

Proof. Let P ∈ R(R〈X〉 ⊂ R〈〈X〉〉). Then, by 2.2, there is a matrix
A ∈ Mn(R〈X〉) (= Mn(R)〈X〉), invertible over R〈〈X〉〉, and a vector b ∈
(R〈X〉)n such that P is a component of the solution u of the matrix equa-
tion Au = b. Since A is invertible, the augmentation ε(A) ∈ Mn(R) must
be invertible (over R). So, multiplying with ε(A)−1 from the left, we can
assume that the matrix equation has the form (id+A)u = b, where A has
zero constant term. More generally, consider a system of equations

(1 +A11)u1 + A22u2 + . . . + A1nun = b1
A21u1 + (1 +A22)u2 + . . . + A2nun = b2

...
...

...
...

An1u1 + An2u2 + . . . + (1 +Ann)un = bn,

where all Aij lie in D(R〈X〉 ⊂ R〈〈X〉〉) and have zero constant term.
By induction over n, we show that then there is a unique solution u =
(u1, . . . , un) in D(R〈X〉 ⊂ R〈〈X〉〉). For n = 1 we get u1 = (1 +A11)−1b1 ∈
D(R〈X〉 ⊂ R〈〈X〉〉). Assume it is true for n− 1. Then we can do Gaussian
elimination. Multiply the first equation on the left with −Aj1(1+A11)−1 ∈
D(R〈X〉 ⊂ R〈〈X〉〉) and add to the jth equation for 2 ≤ j ≤ n. We obtain
a system of n− 1 equations with the same structure, which has, by induc-
tion hypothesis, a unique solution u2, . . . , un lying in the division closure.
Solving the first equation, we get u1 ∈ D(R〈X〉 ⊂ R〈〈X〉〉). The proof for
RJXK is analogous. �

Remark 2.6. If k is a commutative field, then

D(k[X] ⊂ kJXK) = R(k[X] ⊂ kJXK) = k(X) ∩ kJXK.

The intersection k(X) ∩ kJXK ⊂ k((X)) consists of the quotients P/Q of
polynomials in k(X) such that Q(0) 6= 0. On the other hand there is no
calculus of fractions for Rrat〈〈X〉〉. In particular, not every rational series
in Rrat〈〈X〉〉 is a quotient of two polynomials.

Example 2.7. From 2.3 we see that the canonical homomorphism φ :
R〈〈X〉〉 → RJXK restricts to a map Rrat〈〈X〉〉 → RratJXK. On the other
hand, it is not true that φ(P ) ∈ RratJXK implies P ∈ Rrat〈〈X〉〉. The
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formal power series

P (x, y) =
∞∑

n=0

xnyn ∈ C〈〈x, y〉〉

is not rational (see [17, example 6.6.2 on p. 203]), but its image under φ is
the geometric series

∞∑
n=0

(xy)n =
1

1− xy
∈ CJx, yK.

Example 2.8 (Word Problem of Z/2× Z/2).
Let G be a finitely generated group and S ⊂ G be a finite subset that
generates G as a monoid. The language of the word problem W(G) (with
respect to S) is defined as the set of words w = x1x2 · · ·xn ∈ S∗ that reduce
to the identity in G. We associate the formal power series

PG =
∑

w∈W(G)

w ∈ Z〈〈S〉〉.

in the noncommuting variables S to W(G). For instance, we have

PZ/2 = (1− x2)−1 =
∑
n≥0

x2n,

where x represents the generator of Z/2. Now we want to consider the
non-trivial example

G = Z/2× Z/2 = {x, y; x2 = y2 = 1, x · y = y · x}
with the monoid generators S = {x, y}. For z ∈ {1, x, y, x · y} ⊂ G define
W(z) as the set of words in S∗ that reduce to z in G. Put Pz =

∑
w∈W(z) w.

The obvious fact that a word in W(z) is trivial or ends with x or y leads
to the following system of equations for P1, Px, Py, Px·y.

P1 = 1 + Pxx+ Pyy

Px = P1x+ Px·yy

Py = P1y + Px·yx

Px·y = Pxy + Pyx.

Now we could apply noncommutative Gaussian elimination to solve it.

The following definition is due to M. Schützenberger.

Definition 2.9 (Proper Algebraic System).
Let X be an alphabet, and let Z = {z1, . . . , zn} be an alphabet disjoint
from X. A proper algebraic system is a set of equations zi = pi, 1 ≤ i ≤ n
such that

(i) pi = pi(X,Z) ∈ R〈X ∪ Z〉 for all 1 ≤ i ≤ n,
7



(ii) 〈pi, 1〉 = 0 and 〈pi, zj〉 = 0 for all 1 ≤ i, j ≤ n, i.e. pi has no constant
term and no linear terms in the zj .

A solution to the proper algebraic system is an n-tuple (S1, . . . , Sn) ∈
R〈〈X〉〉n of formal power series in X each having zero constant term and
satisfying

Si = pi(X,Z)zj=Sj
for 1 ≤ i ≤ n.

Here pi(X,Z)zj=Sj means that we formally substitute each zj by Sj in
pi(X,Z). Each Sj is called a component of the solution.

Definition 2.10 (Algebraic Power Series in Noncommuting Variables).
A formal power series p ∈ R〈〈X〉〉 is algebraic if P − 〈P, 1〉 is a component
of the solution of some proper algebraic system. The set of all algebraic
formal power series in R〈〈X〉〉 is denoted by Ralg〈〈X〉〉.

Theorem 2.11. Every proper algebraic system has a unique solution.

The proof is constructive [17, proposition 6.6.3 on p. 203]. The under-
lying algorithm, called successive approximation, will be illustrated in the
following example.

Example 2.12. The power series S =
∑

n≥0 x
nyn ∈ Z〈〈x, y〉〉 of example

2.7 is algebraic because S − 〈S, 1〉S satisfies the equation z = xy + xzy.
To obtain the solution by the method of successive approximation, we put
S(0) = 0 and define recursively S(n+1) = xy + xS(n)y ∈ Z〈x, y〉. The first
recursion steps yield

S(0) = 0

S(1) = xy

S(2) = xy + x(xy)y = xy + x2y2

S(3) = xy + x(xy + x2y2)y = xy + x2y2 + x3y3.

The limit limn→∞ S(n) equals S − 〈S, 1〉S.

The following theorem can be found in [4, theorem 9.17 on p. 135].

Theorem 2.13. Ralg〈〈X〉〉 ⊂ R〈〈X〉〉 is a subring containing Rrat〈〈X〉〉.

As we would expect from a reasonable notion of algebraicity in the non-
commutative world, it is compatible with algebraicity in the commutative
setting. See [17, theorem 6.6.10 on p. 207] and [17, theorem 6.1.12 on p. 168]
for the proofs of the next two theorems.

Theorem 2.14. Let k be a commutative field. Then the algebraic formal
power series in noncommuting variables are mapped to algebraic formal
power series in commuting variables under the canonical homomorphism
φ : k〈〈X〉〉 → kJXK.
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Theorem 2.15. Let k be a commutative field, and let P ∈ k(x)((x1, . . . , xn))
be algebraic over k(x)(x1, . . . , xn). If P (1, . . . , 1) is a well-defined element
in k((x)) then P (1, . . . , 1) ∈ k((x)) is algebraic over k(x).

Definition 2.16 (Hadamard Product).
Let P,Q ∈ R〈〈X〉〉. The Hadamard product P �Q of P and Q is defined as

P �Q =
∑

w∈X∗

〈P,w〉〈Q,w〉w.

The following theorem by Schützenberger [16] is central to the theory
of formal power series in noncommuting variables, and it is the crucial
ingredient in the proof of our main result 2.19. For a proof see also [17,
proposition 6.6.12 on p. 208]. We remark that in [16] rational series are
defined using the division closure which is equivalent to our definition by
theorem 2.5.

Theorem 2.17 (Schützenberger’s Theorem).
Let R be a commutative ring. The Hadamard product of two rational formal
power series in R〈〈X〉〉 is again rational, and the Hadamard product of an
algebraic with a rational formal power series in R〈〈X〉〉 is algebraic.

Example 2.18 (Word Problem of Free Groups).
Consider the free group Fn in n letters x1, . . . , xn. It is generated as a
monoid by S = {x1, . . . , xn, x

−1
1 , . . . , x−1

n }. The language of the word prob-
lem W(Fn) is the set of those words in S∗ that reduce to the identity under
the relations

xix
−1
i = x−1

i xi = 1, 1 ≤ i ≤ n.

We will construct a proper algebraic system for PF n =
∑

w∈W(F n) w ∈
Z〈〈S〉〉. The algebraicity of PF n was shown by Chomsky and Schützen-
berger [3]. For convenience, we give a detailed argument.
We say that an element in W(Fn) is atomic if it cannot be written as the
product of two words in W(Fn)+. For t ∈ S we define Gt as the subset of
W(Fn) consisting of atomic words whose first letter is t, i.e.

Gt = {w ∈ W(Fn); w = tv, w 6= uu′ for u, u′ ∈ W(Fn)+}.
Define Pt =

∑
w∈Gt

w ∈ Z〈〈S〉〉 and put

t̄ =

{
xi if t = x−1

i

x−1
i if t = xi.

Claim 0 : Each word in Gt must end in t̄.
For w ∈ Gt of length ≤ 2 that is certainly true. Assume it is true for words
in Gt of length smaller than m where m > 2. Let w ∈ Gt be of length m.
Since w reduces to the identity, it contains a substring of the form xx̄ with
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x ∈ S. This substring is not at the first or last position, otherwise w would
not be atomic. So we get that w = tw1xx̄w2b with w1, w2 ∈ S∗, b ∈ S.
The word tw1w2b is also atomic, and by the induction hypothesis it follows
b = t̄.
Now define the subset Bt ⊂ S∗ by requiring Gt = tBtt̄, and put Qt =∑

w∈Bt
w.

Claim 1 : Every w ∈ W(Fn)+ can be uniquely written as w = uv with
u ∈ W(Fn), v ∈ Gt for some t ∈ S.
For a given w ∈ W(Fn)+ define the string v as the string of minimal length
in W(Fn)+ such that there is a factorization w = uv. Then there must be
a t ∈ S with v ∈ Gt. The converse of the first claim is trivial:
Claim 2 : Every product uv with u ∈ W(Fn), v ∈ Gt lies in W(Fn)+.
Claim 3 : Every w ∈ B+

t can be uniquely written as w = uv with u ∈ Bt,
v ∈ Gq, q 6= t̄.
By the first claim there exist a unique u and v ∈ Gq with w = uv. Because
twt̄ = tuvt̄ ∈ Gt is atomic, the string v cannot end with t, hence q 6= t̄. It
is clear that tut̄ reduces to the identity. If tut̄ would not be atomic then
twt̄ = tuvt̄ would not be either, and so we must have u ∈ Bt.
Claim 4 : Every word w = uv with u ∈ Bt, v ∈ Gq, q 6= t̄ lies in B+

t .
Suppose that twt̄ is not atomic. Then let twt̄ = u′v′ be a factorization with
u′, v′ ∈ W(Fn)+ and u′ having minimal length. We have u′ ∈ Gt. Since
tut̄ is atomic we must have u′ = turt̄. It is r ∈ W(Fn)+ because of q 6= t̄.
So we have r, r′ ∈ W(Fn)+ with v = rr′. This contradicts v being atomic,
hence twt̄ ∈ Gt, i.e. w ∈ Bt.
Algebraically, the first and second claim can be expressed by the equation

(1) PF n = 1 + PF n

∑
t∈S

Pt,

and the third and fourth claim translate into

(2) Qt = 1 +Qt

∑
q∈S
q 6=t̄

Pq for t ∈ S.

The equations (1), (2) yield the following proper algebraic system with the
solution (P+

F n , Q+
x1
, Q+

x−1
1
, . . . , Q+

xn
, Q+

x−1
n

). Here we use the abbreviation

P+ = P − 〈P, 1〉 for a power series P .

P+
F n = (P+

F n + 1)
∑
q∈S

q(Q+
q + 1)q̄

Q+
t = (Q+

t + 1)
∑
q∈S
q 6=t̄

q(Q+
q + 1)q̄ for t ∈ S.
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Hence PF n is algebraic.

Now we want to consider formal power series in one variable over group
rings. Let G be a group and R be a ring. The von Neumann trace on the
group ring RG is the mapping

trRG : RG→ R,
∑
g∈G

agg 7→ ae.

For R = C this is the restriction of trN (G) : N (G) → C to CG. The map
extends to a map of the associated power series rings (in one variable)

trRG : RGJzK → RJzK,
∑
n≥0

anz
n 7→

∑
n≥0

trRG(an)zn.

Theorem 2.19 (Power Series over the Group Ring of Free Groups).
(i) Let H be a subgroup of G with finite index n < ∞, and let k be a

commutative ring with 1
n ∈ k. Then

trkG(kGratJzK) ⊂ trkH(kHratJzK).

(ii) Let k be a commutative field and F be a virtually free group. Then

trkF (kFratJzK) ⊂ kalgJzK.

Proof. (i) By choosing a system of representatives {Hg1, . . . ,Hgn} = H\G
we get an isomorphism of left kH-modules

kG
∼=−→

n⊕
i=1

kH, g 7−→ (h1, . . . , hn) with hi =

{
gg−1

i if gg−1
i ∈ H

0 else.

This induces the injection φ of rings

φ : kG = homkG(kG, kG) ↪→ homkH(kG, kG) ∼= Mn(kH).

Let Σ : Mn(kH) → kH be the map defined by taking the sum of the
diagonal entries. The canonical extensions of φ and Σ to the respective
power series rings are denoted by the same symbol. A little computation
shows that the von Neumann traces trkG and trkH on kG and kH satisfy

1
n

trkH ◦Σ ◦ φ = trkG .

By 2.3 the map φ restricts to a homomorphism φ : kGratJzK →Mn(kH)ratJzK.
We get the inclusion

trkG (kGratJzK) ⊂ (trkH ◦Σ)(Mn(kH)ratJzK).

But from the explicit description of the rational closure (2.2) it is clear that
the entries of Mn(kH)ratJzK lie in kHratJzK. Therefore Σ(Mn(kH)ratJzK) ⊂
kHratJzK, and the claim follows.

(ii) For the second assertion we can restrict to free groups because of the
11



first part. Furthermore, every free group F is the union of its finitely
generated subgroups Fi, i ∈ I. As one knows, the Fi are also free. It is
easy to see that kFratJzK is the union of the (kFi)ratJzK. So it suffices to
deal with finitely generated free groups.

Let F be the free group in n letters x1, x2, . . . , xn, and let S be the
alphabet S = {x1, . . . , xn, x

−1
1 , . . . , x−1

n }. We denote the empty string in
S∗ by e. In the sequel we shall frequently use the fact that a formal power
series (with commuting or noncommuting variables) is invertible if and only
if its augmentation is invertible in the coefficient ring.

By rearranging terms, we get the following ring inclusions.

k〈S〉JzK ⊂ kJzK〈〈S〉〉 ⊂ k((z))〈〈S〉〉 ⊃ k(z)〈〈S〉〉 ⊃ k(z)〈S〉

Thus it makes formally sense to claim

(3) (k〈S〉)ratJzK ⊂ (k(z))rat〈〈S〉〉.

Let us show this. An element in (k〈S〉)ratJzK is an entry in the inverse
of some matrix A ∈ Mn(k〈S〉[z]) = Mn(k)〈S〉[z] which is invertible over
k〈S〉JzK. In particular, the coefficient of z0 in A is invertible in Mn(k)〈S〉.
Hence the coefficient of ez0 of A is invertible in Mn(k). In particular, the
coefficient of e, which lies in Mn(k[z]), is invertible in Mn(kJzK), hence in-
vertible inMn(k(z)). Thus A is invertible inMn(k(z))〈〈S〉〉 = Mn(k(z)〈〈S〉〉)
implying (3).

The monoid homomorphism π : S∗ → F is uniquely defined by π(xi) =
xi and π(x−1

i ) = x−1
i for 1 ≤ i ≤ n. It extends to a homomorphism

π : k〈S〉 → kF and then (coefficient-wise) to π : k〈S〉JzK → kF JzK.
Now consider P ∈ (kF )ratJzK. The power series P is a component of

the solution u of some matrix equation Au = b, where A ∈ Mn(kF [z]) =
Mn(kF )[z] is a matrix which is invertible over kF JzK, and b is a vector in
(kF [z])n. Without loss of generality, we can assume that the coefficient
of z0 in A is the identity matrix. Compare the proof of 2.5. Choose a
lift b̄ of b to (k〈S〉[z])n, i.e. π(b̄) = b. Obviously, one can choose a lift
Ā ∈ Mn(k〈S〉[z]) = Mn(k〈S〉)[z] of A such that the z0-coefficient of Ā is
the identity matrix. In particular, Ā is invertible inMn(k〈S〉JzK). Therefore
the respective entry of the solution ū of the matrix equation Āū = b̄ maps
to P under π. Thus we have

P ∈ π ((k〈S〉)ratJzK) .

Let P̄ ∈ (k〈S〉)ratJzK
(3)
⊂ (k(z))rat〈〈S〉〉 be a preimage of P . Denote by

φ : k(z)〈〈S〉〉 → k(z)JSK the canonical homomorphism. Let PF ∈ Z〈〈S〉〉 be
the power series associated to the word problem of F with respect to S.
We have seen in 2.18 that PF is algebraic. Therefore P̄ � PF is algebraic,
i.e. P̄ � PF ∈ (k(z))alg〈〈S〉〉 by 2.17. So φ(P̄ � PF ) ∈ k(z)JSK is algebraic

12



by 2.14. Substituting every s ∈ S by 1, we get a formally well defined power
series φ(P̄ � PF )(1, . . . , 1) ∈ kJzK with

trkF (P ) = φ(P̄ � PF )(1, . . . , 1) ∈ kJzK.

Finally, from 2.15 the algebraicity of trkF (P ) is obtained. �

Example 2.20 (Markov Operator for Free Abelian Groups).
Consider the so-called Markov operator

M = x+ x−1 + y + y−1 ∈ CZ2

of the free abelian group Z2 = 〈x, y;xy = yx〉. A combinatorial argument
shows that the trace T (z) ∈ CJzK of the rational power series

(1−Mz)−1 =
∞∑

n=0

Mnzn ∈ CZ2JzK.

is given by

T (z) =
∞∑

n=0

(
2n
n

)2

z2n ∈ CJzK.

But this power series can be shown to be not algebraic. Compare [17,
6.3. on p. 217]. We remark that T (z) is D-finite, i.e. it satisfies a linear
differential equation with polynomial coefficients.

Example 2.21 (Markov Operator for Free Groups).
Now we consider the Markov operator of the free group F k of rank k in the
letters xi, 1 ≤ i ≤ k.

M =
k∑

i=1

xi + x−1
i ∈ CF k

Let X = {x1, . . . , xk, x
−1
1 , . . . , x−1

k }. We compute the trace T = T (z) ∈
CJzK of the formal power series

(1−Mz)−1 =
∞∑

i=0

M izi ∈ CF kJzK.

This problem was studied and solved by a large number of people. One way
to solve it is to apply Voiculescu’s machinery of free probability (see [18,
p. 28]). The algebraicity of T is also shown in [19]. The following argument
uses 2.18. We begin with a general remark.

13



Let Σ an alphabet. For w ∈ Σ∗ denote by |w| the length of w. The map

ψ : C〈〈Σ〉〉 −→ CJzK

∑
w∈Σ∗

aww 7→
∑
n≥0

 ∑
|w|=n

aw

 zn

is a ring homomorphism. Note that in the notation of 2.18 we have T =
ψ(PF k). By symmetry, we have that S := ψ(Pt) is the same for all t ∈ X.
Because of Pt = tQtt̄ we obtain ψ(Qt) = z−2S. The equations (1) and (2)
in example 2.18 yield the following system of equations after applying ψ.

T = 1 + 2kTS

z−2S = 1 + z−2(2k − 1)S2

The solution T of this system satisfies the algebraic equation

(1− 4k2z2)T (z)2 + (2k − 2)T (z)− (2k − 1) = 0.

3. The Spectrum of Matrices over the Group Ring of a Free
Group

In this section we study spectra of operators in a finite von Neumann
algebra. More precisely, we compute the spectral density functions of self-
adjoint operators. Applying the results of the last section, we will show
that the Novikov-Shubin invariants of operators in Mn(CF ) ⊂Mn(N (F )),
where F is a virtually free group, are positive and rational unless they are
∞+.

The idea is to consider a power series built from the operator, which
codifies all its spectral information. Using the Riemann-Stieltjes inversion
formula (a well-known tool in this context), we then extract all the spectral
information, we need, from this power series. This method is also employed
in [18] to compute spectra of operators.

Definition 3.1 (Cauchy Transform).
The Cauchy transform Gµ of a finite, compactly supported Borel measure
µ on R is defined as the function on C+ = {z ∈ C; Im z > 0} given by

Gµ(z) =
∫

R

dµ(t)
z − t

.

In our context the measure will be the spectral measure µA of a self-
adjoint operator A in a finite von Neumann algebra A.

Lemma 3.2 (Cauchy Transform of the Spectral Measure).
We have the following equality of holomorphic functions on {z ∈ C+; ‖z‖ >
‖A‖}.

GµA
(z) = trA((z −A)−1).
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Remark 3.3. In the sequel
∫ b

a
means

∫
[a,b]

, and
∫ b−

a
stands for

∫
[a,b)

etc.

Proof. The support of µ lies in the spectrum ofA, in particular in [−‖A‖, ‖A‖].
For z > ‖A‖ the operator z −A is invertible. We get for ‖z‖ > ‖A‖

GµA
(z) =

‖A‖∫
−‖A‖

dµA(t)
z − t

=

‖A‖∫
−‖A‖

( ∞∑
n=0

tn

zn+1

)
dµA(t) =

∞∑
n=0

 ‖A‖∫
−‖A‖

tn

zn+1
dµA(t)


=
∑
n≥0

trA(Anz−n−1)

= trA((z −A)−1).

Here recall that
∑

n≥0A
nz−n−1 converges to (z−A)−1 in the norm topol-

ogy [8, lemma 3.1.5 on p. 175], and that trA is continuous with respect to
the ultraweak topology. �

Theorem 3.4 (Riemann-Stieltjes Inversion Formula).
Let µ be a finite, compactly supported Borel measure on R. Let a, b ∈ R
such that µ({a}) = µ({b}) = 0. Then

µ([a, b]) = lim
y→0+

− 1
π

b∫
a

ImGµ(x+ iy)dx

 .

Proof. It is a well-known fact, known as the Riemann-Stieltjes Inversion
Formula, that µ is the weak limit of the measures − 1

π ImGµ(x+ iy)dx [7,
p. 92-93]. By [2, Satz 30.12 on p. 228] this yields the statement provided
µ({a}) = µ({b}) = 0. �

Since we could not find a reference for the following lemma, we include
its proof for the convenience of the reader.

Lemma 3.5. Let µ be a finite, compactly supported Borel measure on R. If
Gµ(z) has a holomorphic extension around t0 ∈ R, then µ({t0}) = 0 holds.

Proof. Write µ as µ = α · δt0 +µ0, α ∈ R≥0, where δt0 is the Dirac measure
concentrated at t0, and the measure µ0 satisfies µ0({t0}) = 0. Then we get

Gµ(z) = α · 1
z − t0

+
∫
R

dµ0(t)
z − t

.

Because Gµ(z) has an analytic extension around t0, we have in particular

lim
y→0+

iy ·Gµ(t0 + iy) = 0.

15



Next we show that

(4) lim
y→0+

∫
R

iy

(t0 + iy)− t
dµ0(t) = 0.

This would imply α = 0 and finish the proof. The absolutes values of the
summands on the right side in

iy

(t0 + iy)− t
=

y2

(t0 − t)2 + y2
+ i

y(t0 − t)
(t0 − t)2 + y2

are ≤ 1 for all y 6= 0 and t ∈ R. Because of σ-additivity and the finiteness
of µ0 we have limε→0+ µ0([t0 − ε, t0 + ε]) = µ0({t0}) = 0. For n ∈ N choose
ε > 0 such that µ0([t0− ε, t0 + ε]) < 1

2n holds. Set R(ε) = R− [t0− ε, t0 + ε].
By the majorized convergence theorem we obtain

lim
y→0+

∫
R(ε)

iy

(t0 + iy)− t
dµ0(t) =

∫
R(ε)

lim
y→0+

y2

(t0 − t)2 + y2
dµ0(t) +

∫
R(ε)

lim
y→0+

y(t0 − t)
(t0 − t)2 + y2

dµ0(t) = 0.

For every y > 0 we get the estimate∣∣∣∣∣∣
t0+ε∫

t0−ε

iy

(t0 + iy)− t
dµ0(t)

∣∣∣∣∣∣ ≤
t0+ε∫

t0−ε

∣∣∣∣ y2

(t0 − t)2 + y2

∣∣∣∣ dµ0(t) +

t0+ε∫
t0−ε

∣∣∣∣ y(t0 − t)
(t0 − t)2 + y2

∣∣∣∣ dµ0(t) ≤
1
n

Hence the limit in (4) is bounded above by 1
n . Because n ∈ N was chosen

arbitrarily, (4) follows. �

Theorem 3.6 (Rationality and Positivity).
Let F be a virtually free group and Q ⊂ k ⊂ C be a field. Let A ∈Mn(kF ) ⊂
Mn(N (F )) be a self-adjoint operator in the finite von Neumann algebra
Mn(N (F )), which lives over the group ring. Then the following holds.

(i) The Novikov-Shubin invariant α(A) is positive rational unless it is
∞+.

(ii) The operator A has a finite number of eigenvalues, and they lie in the
algebraic closure of k.

(iii) The spectral density function FA is piecewise smooth.
16



Proof. The entries of z(1− Az)−1 ∈ Mn(kF )JzK lie in the rational closure
(kF )ratJzK. Due to theorem 2.19, the formal power series

q(z) = trMn(kF )

(
z(1−Az)−1

)
=

n∑
i=1

trkF

(
(z(1−Az)−1)ii

)
is algebraic over k(z). From a non-trivial algebraic equation of q(z) it is
obvious that q(z−1) also satisfies a non-trivial algebraic equation over k(z).
In the domain {z ∈ C+; ‖z‖ > ‖A‖} the function q(z−1) is convergent, and
we have GµA

(z) = q(z−1), due to 3.2. Therefore there is a non-constant
polynomial P (w, z) = pn(z)wn + ·+ p0(z)w0 ∈ k[w, z], pi(z) ∈ k[z], pn 6= 0
such that

P (GµA
(z), z) = 0

holds in {z ∈ C+; ‖z‖ > ‖A‖} – thus in every domain GµA
(z) can be analyt-

ically extended to. We can assume that P (w, z) is irreducible (compare [1,
p. 293]). Let Z ⊂ C be the finite set consisting of the zeroes of pn and the
zeroes of the discriminant of P . We remind the reader that the discriminant
of P is a polynomial over k, and the zeroes of the discriminant are exactly
the points z0 such that Q(w) = P (w, z0) has multiple roots. In particular,
Z lies in the algebraic closure of k. From the domain {z ∈ C+; ‖z‖ > ‖A‖}
the function GµA

(z) can be analytically extended along any arc which does
not pass through a point of Z [1, p. 294]. Equivalently, GµA

(z) can be
analytically extended to every simply connected domain not containing Z.

For an eigenvalue λ of A we have µA({λ}) > 0, and 3.5 implies that the
eigenvalues lie in Z. Thus they are contained in the algebraic closure of k.

Let λ ∈ R−Z. There is an open ball U around λ such that GµA
can be

analytically extended to U . In particular, for ε ∈ U∩R we have µA({ε}) = 0
by 3.5, and the Riemann-Stieltjes inversion formula yields

FA(λ)− FA(ε) = lim
y→0+

− 1
π
·

λ∫
ε

ImGµA
(x+ iy)dx

 .

Now the majorized convergence theorem implies

FA(λ)− FA(ε) = − 1
π
·

λ∫
ε

ImGµA
(x)dx.

Thus FA(λ) is smooth outside of Z, and the derivative there is

(5) F ′A(λ) = − 1
π
· ImGµA

(λ).

Next we show α(A) ∈ Q>0 ∪ {∞+}. The Novikov-Shubin invariant is
defined using the spectral density function of A∗A, so we can assume that
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A is positive. BecauseGµA
is algebraic there exists k ∈ N such thatGµA

(zk)
can be analytically extended to a pointed neighborhood of 0 having 0 as a
pole (see [1, theorem 4 on p. 297]). Therefore GµA

(zk) has an expansion
as a Laurent series with finitely many terms of negative exponent. Put
S(λ) = FA(λk). From S′(λ) = − k

π · ImGµA
(λk)λk−1 for small λ > 0 we

see, by integrating, that S(λ) has the form

(6) S(λ)− S(ε) =
∞∑

i=N

ciλ
i + c ln(λ)−

∞∑
i=N

ciε
i − c ln(ε)

with N ∈ Z, c, ci ∈ R and 0 < ε ≤ λ small enough. For fixed λ and ε →
0+ (6) stays bounded because the spectral density function is bounded. In
particular, we get limε→0+

∑∞
i=N ciε

i+1 = 0 because of limε→0+ ε ln(ε) = 0.
This implies ci = 0 for i < 0, and so c must be zero for (6) to stay bounded.
Using the fact that S(λ) = FA(λk) is right-continuous, we finally get

S(λ)− S(0) =
∞∑

i=M

ciλ
i

with M > 0. If all ci are zero, then FA(λ) − FA(0) is constant for small
λ, and then α(A) = ∞+ follows. Now consider the case that not all ci are
zero. Without loss of generality, we assume that cM 6= 0. By the l’Hospital
rule we get

lim
λ→0+

ln(FA(λk)− FA(0))
ln(λ)

= lim
λ→0+

ln(S(λ)− S(0))
ln(λ)

= M.

Therefore we obtain

α(A) = lim
λ→0+

ln(FA(λ)− FA(0))
ln(λ)

=
M

k
∈ Q>0.

�

Remark 3.7. In general, it is not clear that the limes inferior in the def-
inition of α(A) can be replaced by a limit. The previous proof shows that
it is possible for operators over the group ring of a virtually free group. We
say that these operators have the limit property.

Part (ii) of 3.6, i.e. the algebraicity of the eigenvalues, is shown in [5] by
a different method. There it is proven not only for virtually free but for
all ordered groups satisfying the strong Atiyah conjecture over the complex
group ring.

Example 3.8. Using the Riemann-Stieltjes inversion formula we are able
to compute an explicit formula for the spectral measure µA of the Markov
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operator A = x+x−1 + y+ y−1 of the free group Z∗Z = 〈x, y〉. The power
series T (z) =

∑
n≥0 trN (Z∗Z)(An)zn satisfies the equation (see 2.21)

(1− 16z2)T (z)2 + 2T (z)− 3 = 0.

The explicit solution to this equation is

T (z) =
3

1± 2
√

1− 12z2
.

Because of GµA
(z) = z−1T (z−1) we obtain

GµA
(z) =

3
z ± 2

√
z2 − 12

=
3(z ∓ 2

√
z2 − 12)

z2 − 4(z2 − 12)
.

There are the (”boundary”) conditions F ′A(λ) ≥ 0 and F ′A(λ) = 0 outside
a compact set. With this in mind, equation (5) implies

F ′A(λ) =

{
6
√

12−λ2

π(48−3λ2) if |λ| <
√

12

0 if |λ| >
√

12.

Thus the support of µA is [−
√

12,
√

12], and in that interval we have the
equality of measures

µA =
6
√

12− λ2

π(48− 3λ2)
dλ.

Integrating yields for |λ| <
√

12

FA(λ)− FA(0) =
2
π

arcsin
(

λ

2
√

3

)
+

1
2π

arctan
(

2(3− λ)√
12− λ2

)
+

1
2π

arctan
(

2(−3− λ)√
12− λ2

)
.
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