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Betti numbers
Homology H;(X;C) and C-dimension: ;(X) = dim¢ H;(X; C).

Attempt at equivariant Betti numbers
Let I = m1(X). Then H;(X;C) is a module over the group ring

Cry = {Z a, | finite sum, a, € C}.

~yer

Pick a nice dimension of C[['-modules and consider dim¢yr H;(X;C).
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Betti numbers
Homology H;(X;C) and C-dimension: ;(X) = dim¢ H;(X; C).

Attempt at equivariant Betti numbers
Let I = m1(X). Then H;(X;C) is a module over the group ring

Cry = {Z a, | finite sum, a, € C}.

yer
Pick a nice dimension of C[['-modules and consider dim¢yr H;(X; C).

Problem
Such dim¢rj might not exist: For I' = F; the differential

CL(STV SL:C) = C[M]2 < C[] = Go(S V §%; C)
is injective. Hence you cannot have additivity of dim¢[r}.

(?-Betti numbers try to remedy this situation!
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Group von Neumann algebra

Crc (M) ={>_ a7 |>_lay [ < oo}
L)y =A{T: £2( ) — £2(I') bounded | Vyer T(yx) =~T(x)}

C[I] embeds (densely) into L(I") as right multiplication operators.

Finite trace

C[r] —— L(r

\ lTl—}trr T)= ,e)
> ayy—rae
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Group von Neumann algebra

CMc M) ={>_ a7 laf < oo}

L(F) = {T: 3(F) — ¢3(T) bounded |V, er T(yx) =~T(x)}
C[I] embeds (densely) into L(I") as right multiplication operators.

Finite trace
Matrix extension for T = (Tj):

C[r] —— L(r

trr(2(r)" Ls (T trr(Ty)
lTHtrr T)= €) (Y Z
> ayy—rae

Trace property: trr(ST) = trr(TS)
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Group von Neumann algebra

Crc (M) ={>_ a7 |>_lay [ < oo}
L)y =A{T: £2( ) — £2(I') bounded | Vyer T(yx) =~T(x)}

C[I] embeds (densely) into L(I") as right multiplication operators.

Finite trace
Matrix extension for T = (Tj):

C[r] —— L(r

trr(2(r)" Ls (T trr(Ty)
lTHtrr T)= €) (Y Z
> ayy—rae

Trace property: trr(ST) = trr(TS)

von Neumann Dimension

dimr(A) == trr(pry: (1) = A C £3(T)")

for a closed -invariant subspace A.
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Equivariant CW-complexes
We consider CW-complexes with cellular actions. The cellular chain

complex C.(X) of a (free) -CW-complex is a (free) Z[[']-chain complex.

(2-Betti numbers (Atiyah, Dodziuk)

Let X be a free -CW complex with cocompact skeleta.
BA(X;T) = dimr(I:/"(homZ[r](C*(X),£2(F))) reduced cohomology!
B M) = B (M; w1 (M)
BA(M) = BRI(ET:T)

Here ET is a classifying space of I', that is, EI ~ % and ' ~ ET freely.
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Equivariant CW-complexes
We consider CW-complexes with cellular actions. The cellular chain

complex C.(X) of a (free) -CW-complex is a (free) Z[[']-chain complex.

(2-Betti numbers (Atiyah, Dodziuk)

Let X be a free -CW complex with cocompact skeleta.
BA(X;T) = dimr(I:/"(homZ[r](C*(X),£2(F))) reduced cohomology!
B M) = B (M; w1 (M)
BA(M) = BRI(ET:T)

Here ET is a classifying space of I', that is, EI ~ % and ' ~ ET freely.

An example
Write I = 7'(1(51) =7 = <f> Then ﬁ,(2)(51) =0.

(t-1)
_—

homzz (C.(SY), £2(2)) == (¢3(Z) (z))
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Basic properties

» equivariant homotopy invariants
» Euler-Poincare formula
» Kinneth formula

» Poincare duality
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Basic properties

» equivariant homotopy invariants
» Euler-Poincare formula
» Kinneth formula

» Poincare duality
(?-Betti numbers and Euler characteristic

Zi CI weak BI+1
Number of n-cells in T\ X = 7

dimr (homzry(Ga(X), £2(T)))

=C@

Ei c Zi I__/i

X(MX) =3 _(=1) dimr(Cy)) = 3 (=1)'(dimr(Z") + dimr (B™))
- Z( 1) (dimp(B") +dimp(H") +dimr(B'*1))
= > (-8R
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Some theorems
» AT < G lattices = B,-(Q)(F) covol(A) = ﬂfz)(/\) covol(I). (Gaboriau)
> /3}2)(r) = 0 for infinite amenable . (Cheeger-Gromov)
» Vanishing of 6,.(2)(I') is Ql-invariant. (Pansu)

Two conjectures
» The ¢2-Betti numbers of a finite CW complex with torsionfree
fundamental groups are integers. (Atiyah conjecture)

» The ¢2-Betti numbers of a closed aspherical manifold are
concentrated in the middle dimension (Singer conjecture)

Atiyah vs. Singer

The Singer conjecture is about #2-Betti numbers of groups whereas
the Atiyah conjecture is about C[[']-modules and their I'-dimension.
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Kaplansky's conjectures
Direct finiteness (conjecture). ab =1 in C[I'] implies ba = 1.
Assume that I is torsionfree.
Idempotent conjecture. p? = p in C[I'] implies p € {0,1}.
Zero divisor conjecture. ab =0 in C[['] impliesa=0or b= 0.

The same statements are conjectured for F,[[]. In that case direct
finiteness is known for sofic groups (Elek-Szabo).
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Kaplansky's conjectures
Direct finiteness (conjecture). ab =1 in C[I'] implies ba = 1.
Assume that I is torsionfree.
Idempotent conjecture. p? = p in C[I'] implies p € {0,1}.
Zero divisor conjecture. ab =0 in C[['] impliesa=0or b= 0.
The same statements are conjectured for F,[[]. In that case direct
finiteness is known for sofic groups (Elek-Szabo).
Some methods
> (2-methods
» Finite-dimensional approximation
» Localization (later)

The approximation and localization methods are also available for F,[I].
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Zero divisor conjecture by /2
ZDC is implied by the Atiyah conjecture which translates into:

dimr(ker(r;)) € N for every a € CJ[I.

ab=0and a# 0= dimr
= dimr
=b=0

(rp: £2(T) = £3(T))) >0
ry: 02

(ker
(Ker(ry: (1) = (1)) = 1
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Zero divisor conjecture by /2
ZDC is implied by the Atiyah conjecture which translates into:

dimr(ker(r;)) € N for every a € CJ[I.

ab=0and a# 0 = dimr(ker(r,: £2(T) — £3(T'))) >0
= dimr(ker(rp: £2(T) — 2(N))) =1
=b=0
Direct finiteness by (2
K>
K () —— £3(T)

dimp(¢3(T)) = dimr(K) + dimp(K*) = dimr(K) + dimp (¢2(T))
=dimr(K)=0= K =0.
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Direct finiteness by approximation

Let I be residually finite:
x C[r —>— C[r] o

FT=Tg>l>T0>...
I'; < T normal and finite index g J, J,
nr; = {e} #0 C[I/T;] — C[I'/T]]

Works for IF,['] too! Elek-Szabo: Direct finiteness for sofic groups.
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Direct finiteness by approximation

Let I be residually finite:
x C[r —>— C[r] o

FT=Tg>l>T0>...

I'; < T normal and finite index g J, J,

nr; = {e} #0 C[r/r;] —= C[r/I]
Works for IF,['] too! Elek-Szabo: Direct finiteness for sofic groups.

Liick's approximation theorem

. " 2 . dimcker(77: C[I'/T;] — C[I'/T}])
dimr ker(ry: £5(F) — €9(IN) = ’|_IIEO C P

for a € Z[I'
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Approximation theorem (Liick)
Let T =Tg>Ty > ... be aresidual chain. Let X be a finite free -CW
complex. Then

i Ba(TAX)
RGN = lim T

Version for universal coverings

Let M be a finite CW complex and m1(M) =T > T1 > ... be a residual
chain. Let M; — M be the covering associated to ;. Then

2 _ bn(Mi)
B (M) = Jim 1]

Version for groups only

Let T =Tg>T; > ... be aresidual chain. Assume that I admits a finite
type classifying space. Then

10 i 4
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Version for spaces

Let T =Tg>T; > ... be aresidual chain. Let X be a finite free -CW
complex. Then

P i BTAX)
FROGD = fim T

Version for group rings
Let ' =Tg>T1 > ... bea residual chain. Then

dimr(ra: ()7 — (1)) = lim dimg ker(7a: <C[[rr/rr]]d - C[r/ri])

for every matrix A € My(Z[I']).
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Comparing chain complexes
Suppose X has d equivariant n-cells. Then
Chyy = homyr(Ca(X), £2(1)) = ¢3(r)?
homz(C,(M\X),C)) = ¢3(r/r;)* = C[r/r]°.

The differentials in the second chain complex are the reductions of the
ones in the first.
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Comparing chain complexes
Suppose X has d equivariant n-cells. Then

Clyy = homyry(Ca(X), £3(T)) = £3(1)?
homz(C,(I'\X),C)) = ¢3(T /T = C[r/r;]°.

The differentials in the second chain complex are the reductions of the
ones in the first.

The Laplacian
A" = (d") od"+d" o (d"h)": Clhy = Cly
> If d" is given by multiplication with A € My 4/ (Z[l']), then (d")* is
given by multiplication with A* € My 4(Z[']) obtained by

transposition and replacing in each entry v by v~ 1.
» Easy fact: ker(A") — I:l”(C(’;)) is an isomorphism.
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Let A: ¢2(I') — ¢3(T') be a positive [-equivariant operator.
Spectral calculus

Poly ([0, [[All]) = L(T), p— p(A)
extends to bounded Borel functions on [0, ||All].

Spectral measure

Riesz representation theorem =- 3 Borel probability measure y supported
on [0, [|Al]:

/Rfd,u = trr(f(A)).
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Let A: ¢2(I') — ¢3(T') be a positive [-equivariant operator.
Spectral calculus

Poly([0, [[A[l]) = L(T), P+ p(A)
extends to bounded Borel functions on [0, || Al|].

Spectral measure

Riesz representation theorem =- 3 Borel probability measure y supported
on [0, [|Al]:

/Rfd,u = trr(f(A)).

At zero
X{0}(A) = Prer(a)  #({0}) = trr(prier(a)) = dimr(ker(A))

The case of finite I'
“_‘ trr(prker A)) “_‘<prker(A)( ) > = Z<prker(A)(’7)a’V>

yer
= trc(Prier(a)) = dimc(ker(A))
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Approximation in terms of spectral measures

» =11 >T5>...residual chain.
> Let a € Z[l].
> u spectral measure of r,: (2(I') — (2(T), i.e

/R fdp = trr(f(a)).

> u; spectral measure of the reduction rz: C[I'/T;] — C[I'/T].
All measures are supported on some [0, K].

_ . dimcker(C[r/T;] & C[r/ri))
dimr(ker(r,)) = ,lggo r:r

:
[ xiordi = (o)) = fim 1(10)) = fim [ xiop

Broad strategy

Spectrum around zero reveals something about the spectrum at zero.
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Digression: Spectrum around zero

Chain complex in low degrees

Let I' be a group with finite generating set S = S~1. Let X be a
classifying space whose 1-skeleton is the Cayley graph.

homzry (Co(X), £2(I)) < homyyr(Gi(X), () — - --
£2(T) GBSEZ(F)

starts the chain complex from which we compute 5£2’(r).

Laplacian in degree 0 and its spectrum
A = d*od: (?(F) — ¢2(T) is right multiplication with

2[S|(1 - % D s)ecr].

seS
————
=R

trr(R") return probability of simple random walk on X after n steps. Its

asymptotic is linked to the decay of the spectrum of A around zero.
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An easy observation
For any b= }" b,y € C[I'] we have

trr(b) = trrr,(b) for i > .
where fg is such that: v € M'\{e}, by 0=~ & T;.

Weak convergence

Apply to b= a" /x”dﬂ(x) =trr(a") = lim trrr,(a") = / x"dpi(x)
1—00 R

R

Also true if f(x) = x" is replaced by a continuous function.

Caveat
Let v =i Xjo,1/7dA. Then

vi — 0 weakly but 0 =v;({0}) 4 do({0}) = 1.
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Basic measure theory

limsup p;({0}) <limsup [ fdu;

i—00 —00 R

:iirgo/Rfdu, /fdu<u({0})

Similarly for closed A and open U:

lim sup 11;(A) < u(A) and liminf (V) > (V)
1—00

i—o0

Already proven: Kazhdan's inequality

Let X be a finite CW complex and 71 (X) =To >T1 > ... be a residual
chain. Let X; — X be the covering associated to I';. Then

lim sup [br"();)] < BP(X)
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Basic measure theory

limsup p;({0}) <limsup [ fdu;

i—00 —00 R

:iirgo/Rfdu, /fdu<u({0})

Similarly for closed A and open U:

lim sup 11;(A) < u(A) and liminf (V) > (V)
1—00

i—o0

Already proven: Kazhdan's inequality

Let X be a finite CW complex and 71 (X) =To >T1 > ... be a residual
chain. Let X; — X be the covering associated to I';. Then

lim sup [br"();)] < BP(X)

Still to do
Ii,.rgjj;f 1i({0}) > p({0})
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Integrality

» Fix jand let n=[I:T;]. Let
0=A1=... = A < Amz1 < ... <\, be the eigenvalues (with
multiplicity) of 7,: C[['/I;] — C[['/T].

» Characteristic polynomial p(z) = z"q(z), q € Z[z].

> )\m+1"')\n: Q(O) > 1.

Small eigenvalues
> Let N(e) be the number of eigenvalues in (0, ¢€).
> 1< Appr A < MO 7" < MO - const.

> 1i((0,€)) = Nf,e) < ﬁ;‘;sﬁtl. Now unfix /.
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Integrality

» Fix jand let n=[I:T;]. Let
0=A1=... = A < Amz1 < ... <\, be the eigenvalues (with
multiplicity) of 7,: C[['/I;] — C[['/T].

» Characteristic polynomial p(z) = z"q(z), q € Z[z].

> )\m+1"')\n: Q(O) > 1.

Small eigenvalues
> Let N(e) be the number of eigenvalues in (0, ¢€).
> 1< Appr A < MO 7" < MO - const.

> 1i((0,€)) = Nf,e) < ﬁ;‘;sﬁtl. Now unfix /.

Conclusion of proof

const
.. ' i ] o S fimi ' .
iminf i({0}) = liminf (45(10,)) = ((0,))) = limnf ([0, )~
=pi((—¢,€))
const
i ! > S —
Finally, let ¢ — 0 > n({0}) Tog |
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Approximation theorem (Liick)

Let T =Tg>Ty > ... be aresidual chain. Let X be a finite free -CW
complex. Then

i Ba(TAX)
RGN = lim T

Version for universal coverings

Let X be a finite CW complex and 71 (X) =To > T1 > ... be a residual
chain. Let X; — X be the covering associated to ;. Then

00, 5

Version for groups only

Let T =Tg>T; > ... be aresidual chain. Assume that I admits a finite
type classifying space. Then

10 i 4
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Characteristic p

Let T =T >T1 > ... bea residual chain. Let X be a finite free -CW
complex. What is

. ba(T\X;Fp)
m —— P77
i~>|| o) [F : F,] '

» Existence?

> Independence of (I';)?
> > 55,2)(X; r?

Need to find potential limit candidates, at least in specific situations!
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Characteristic p

Let T =T >T1 > ... bea residual chain. Let X be a finite free -CW
complex. What is

. ba(T\X;Fp)
m —— P77
i~>|| o) [F : F,] '

» Existence?

> Independence of (I';)?
> > 55,2)(X; r?

Need to find potential limit candidates, at least in specific situations!

Results by Lackenby in degree 1

Let I be finitely presented and by(I") > 0. If the above limit is > 0 for a
specific residual chain and some prime, then I is large.
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Linnell's work on the Atiyah conjecture
His work is based on localization techniques.

C[r «—— L(IN)

| |

D) —— U

» U(T) is the algebra of M-equivariant unbounded operators
2(T) — £2(T).

» D(T) is the division closure of C[I'] inside U(T); serves as a
localization of C[I].
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Linnell's work on the Atiyah conjecture
His work is based on localization techniques.

C[r —— L(IN

| |

D) —— U

» U(T) is the algebra of M-equivariant unbounded operators
2(T) — £2(T).

» D(T) is the division closure of C[I'] inside U(T); serves as a
localization of C[I].

» For torsionfree solvable groups D(I') is a division ring and
B2(X; T) = dimp(ry H (homgr(C.(X), D(T)) € N,

» Goal: Characterize D(I') as an algebraic localization which can be
done for F,[I] as well.
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Amenable groups

Group rings of elementary amenable groups

Let I be a torsionfree elementary amenable group. Then F,['] has no
zero divisors (Kropholler-Linnell-Moody, Linnell) and its Ore localization
Q(Fp[) is a division ring.

Approximation

Let I' be a torsionfree elementary amenable group and (I';) be a residual
chain. Let X be a finite free [-CW complex. Then

lim w = dimq, 1) (Hn(QUELIT) @, C.(X)) )
(Linnell-Liick-S.)

Algebraic description of ¢2-Betti numbers

Replace I, by C above and one obtains an algebraic description of
(2-Betti numbers in this case.
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p-adic analytic groups
(Completed) group rings
Up to finite index, F,[[]] = limj oo Fp[l/Ti] has no zero-divisors, and its
Ore localization is a division ring.

Approximation

Let I < GL,(Z,) be an embedding and I'; = ker(I' — GL,(Z/p'). Let X
be a finite free -CW complex. Then

b,,(F,-\X; Fp

lim ) = rkﬂrp[[r]] (Hn (Fp[[r]] ®1Fp[r] C*(X))) € Q.

i—00 [F . I',-]
(Calegari-Emerton; Bergeron-Linnell-Liick-S.)

Algebraic description of ¢2-Betti numbers

Replace I, by C above and one obtains an algebraic description of
(2-Betti numbers in this case.

Open problem

Can one use this to prove the zero-divisor and Atiyah conjecture for
torsionfree linear groups?
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Residually torsionfree nilpotent groups
Orderable groups

Such groups possess a strict total ordering invariant under left and right
translations.

Malcev-Neumann construction
Let k be a field. The ring of formal power series k[[[']] with well-ordered
support is a skew field containing k[I].

Approximation

Let =T >T1 > - be anormal chain such that (), T; = {1} and
each I'/T; is torsion-free nilpotent. Set H; = rire.

: . ba(H\X;F
dimg, ((r)) (Ha(Fp((1) @51y Ce(X,Fp))) = lim ([I'\H]p)
(Bergeron-Linnell-Liick-S.)

Algebraic description of ¢2-Betti numbers

Replace I, by C above and one obtains an algebraic description of

£2-Betti numbers in this case.
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(?-Betti numbers of locally compact groups

3 Theory of £2-Betti numbers for unimodular locally compact groups due
to Davis-Dymara-Januszkiewicz-Okun and Petersen.

Structure theory

A locally compact group G modulo its amenable radical R(G) is a

product of a semisimple Lie group and a totally disconnected group.
(Hilbert’s 5th problem).

Focus on totally disconnected groups

0 if R(G) is not compact;
BR(G, ) = 52 ( )
(G/R(G),pr, ) otherwise.

,(,2)(6) for semisimple Lie group G can be studied by ¢-Betti
numbers of its lattices (Borel).

» Kiinneth formula reduces computations to totally disconnected
groups.
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von Neumann algebra L(G) of G

G acts on L?(G, 1) by translations from the left and the right. The
analog of C[I'] — L(T') is

A Go(G) = B(L2(G, )¢ =: L(G)
/<z> (g7 h)du(e).

Semifinite trace on L(G) for totally disconnected G
The analog of trr |cr) does not extend to all of L(G).

trg: Go(G) = C, ¢ — o(e)
e € G has a neighborhood basis of compact-open subgroups. Define

tricu): L(G)y = [0,00], T = sup (T(xk),xk)/u(K)?

<co

Note that tr(¢ ,,y(A(xk)) = 1.
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von Neumann dimension
For a G-invariant closed subspace A C L%(G),

dim(g,.)(A) == tr( .y (pra) € [0, o]
and similarly for A C L2(G)?. In general, dimg(L%(G)) = oo.

Projections from compact-open subgroups

Let K < G be compact-open. The projection onto the subspace of left
K-invariant functions KL2(G, 1) C L?(G,p) is )\(ﬁx;().

dim(GV#)(KL2(G7LL)) = ,U,(lK)

Extension to arbitrary L(G)-modules

An extension of dim(¢ ) to arbitrary L(G)-modules in the spirit of Liick’s
dimension theory for finite von Neumann algebras is possible (Petersen).
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G-CW-complexes

A proper smooth G-CW complex is a CW-complex X with a cellular
G-action such that each cell has a compact-open stabilizer. As a
G-module, the cellular chain complex looks like

Ga(X) = P ZIG/K].

KeF,
A geometric model of G is a proper smooth contractible G-CW
complex that has finitely many G-orbits of cells in each dimension.
E.g. Affine Bruhat-Tits buildings of reductive p-adic groups are such.
Cayley-Abels graph

Let K < G be compact-open. Let S C G be a bi-K-invariant compact
generating set of G. The Cayley-Abels Graph is

> Vertices: cosets G/K
» Edges from gK to gsK.
» There are one equivariant O-cell and |K\S/K]-equivariant 1-cells.
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(?-Betti numbers

(G, 1) = dims (A2 (G, 1%(6)))

If G acts on a proper smooth contractible G-CW complex with finitely
many G-orbits of cells in each dimension, then

BD(G, 1) = dim(c o ( A" (home(C.(X), L(6))) )

20/34



(?-Betti numbers

B2(6, 1) = dimg. (F2(6,1%(6)) )

If G acts on a proper smooth contractible G-CW complex with finitely
many G-orbits of cells in each dimension, then

BD(G, 1) = dim(c o ( A" (home(C.(X), L(6))) )

Remark
If K1,..., Ky are the stabilizers of the G-orbits of n-cells, then
homg(Ca(X), L2(G)) 2= K 12(G) & ... & K/ 12(G).
Thus,
B2 (G6) < L 42
~ (K1) 1(Ka)
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(?-Betti numbers

(G, 1) = dims (A2 (G, 1%(6)))

If G acts on a proper smooth contractible G-CW complex with finitely
many G-orbits of cells in each dimension, then

BD(G, 1) = dim(c o ( A" (home(C.(X), L(6))) )

Remark
If K1,..., Ky are the stabilizers of the G-orbits of n-cells, then
homg(Ca(X), L2(G)) 2= K 12(G) & ... & K/ 12(G).
Thus,
B2 (G6) < LI
~ (K1) 1(Ka)

(?-Betti numbers of a lattice ' < G

BA(r) = covol(NBP (G, 1) (Kyed-Petersen-Vaes).
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Example
Let G = SL3(Qp) and X be the 2-dim. Bruhat-Tits building of G.
» one equivariant 2-cell with stabilizer B, the Iwahori subgroup of G;

> three equivariant 1-cells corresponding to the edges of the
fundamental chamber. The stabilizer of each splits into p + 1 many
cosets of B.

Normalizing pu(B) = 1, we get 5§2)(G) >1-3/(p+1).
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Example
Let G = SL3(Qp) and X be the 2-dim. Bruhat-Tits building of G.
» one equivariant 2-cell with stabilizer B, the Iwahori subgroup of G;

> three equivariant 1-cells corresponding to the edges of the
fundamental chamber. The stabilizer of each splits into p + 1 many
cosets of B.

Normalizing pu(B) = 1, we get 5(2)( G)>1-3/(p+1).

Application to deficiency of lattices
For every lattice I' < G = 5L3(Q,), we have

def(r) < 1— 8N =1 - B(G) covol(N) <1 (1 - pi ) covol(T).

» Let X be the Cayley complex of a presentation. Then
g-r=1-x(X)=1- ﬁé (M) +82(M) - B2(X:1)
=14 87(7) - 52X,

» But ﬂf)(;{; r> 5&2)(F) and /352’(r) = 0 by property (T).
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The space of subgroups

The set Subg of closed subgroups of G can be endowed with a topology
(Chabauty topology) that makes it compact. H, — H iff

» for h € H there is h, € H,, with h = lim h,,.
» for convergent (hy,,) with have lim h,, € H.

Invariant random subgroups

A conjugation invariant Borel probability measure on Subg is called an
invariant random subgroup (IRS). The set of IRS becomes a compact
space with respect to weak convergence.

Lattices and normal subgroups as IRS

Let ' < G be a lattice. The pushforward of the Haar measure under
G/T — Subg, gl — glg™1, is the IRS v associated to . The point
measure concentrated at a closed normal subgroup is an IRS.
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Stuck-Zimmer theorem

Every non-atomic ergodic IRS in a connected simple Lie group of higher
rank is of the form v for a lattice I'.

Levit: also true for simple algebraic groups over non-archimedean fields.

Margulis' normal subgroup theorem

Every normal subgroup of a lattice I' in a higher rank simple Lie group is
either finite or finite index in T.
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Stuck-Zimmer theorem
Every non-atomic ergodic IRS in a connected simple Lie group of higher
rank is of the form v for a lattice I'.

Levit: also true for simple algebraic groups over non-archimedean fields.

Margulis' normal subgroup theorem

Every normal subgroup of a lattice I' in a higher rank simple Lie group is
either finite or finite index in T.

Stuck-Zimmer = Margulis
Let AT < G.
» Consider pushforward v of G/I' — Subg, g\ — ghg~ 1.
» v atomic? Then A < Z(G) center.
» Otherwise A is a lattice by Stuck-Zimmer, thus [ : A] < cc.
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Automatic convergence (7s)

If ([;) is a sequence of lattices in a higher rank simple Lie groups with
covol(l';) — oo, then v, — Je. (Also true in the p-adic case and in
positive characteristic provided uniform discreteness by Gelander-Levit)

Uniform discreteness
A family of lattices is uniformly discrete, if there is a neighborhood of
e € G that intersects every conjugate of a element in the family trivially.

Lattice approximation in Lie groups (7s)

Let G be a non-compact simple Lie group. If (I';) is a uniformly discrete
sequence of lattices whose IRS converge to Je, then

. bn(rl)
(2) - _on\ )
Ba(G, 1) Iin;O covol(T;)
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Lattice approximation in t.d. groups (Petersen-S.-Thom)

Assume that G totally disconnected has a geometric model. Let (I';) be a
sequence of lattices whose IRS converge to d.. Then

.. ba(T)
(2) < _n\ 1)
By (G, ) ||im inf covol(T))’

If, in addition, (T';) is uniformly discrete, then

. bn(T;)
() — o)
B (G 11) I|l>nc20 covol(T;)

Corollary

Let G be a simple algebraic group. Let G = G(Qp). If (I';) is a sequence
of lattices in G such that covol(I';) — oo, then

.. ba(T)
(2) < _on\ 1)
By (G, p) ||im inf covol(T))’

Remark
In the discrete case the opposite inequality (Kazhdan's inequality) holds
by general considerations.
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