ℓ^2 -Betti numbers and their approximation by finite-dimensional analogues

Roman Sauer

Karlsruhe Institute of Technology

Ventotene, September 2015

Betti numbers

Homology $H_i(X; \mathbb{C})$ and \mathbb{C} -dimension: $\beta_i(X) = \dim_{\mathbb{C}} H_i(X; \mathbb{C})$.

Attempt at equivariant Betti numbers

Let $\Gamma = \pi_1(X)$. Then $H_i(\widetilde{X}; \mathbb{C})$ is a module over the **group ring**

$$\mathbb{C}[\Gamma] = \{ \sum_{\gamma \in \Gamma} a_{\gamma} \gamma \mid \text{finite sum, } a_{\gamma} \in \mathbb{C} \}.$$

Pick a nice dimension of $\mathbb{C}[\Gamma]$ -modules and consider $\dim_{\mathbb{C}[\Gamma]} H_i(\widetilde{X}; \mathbb{C})$.

Betti numbers

Homology $H_i(X; \mathbb{C})$ and \mathbb{C} -dimension: $\beta_i(X) = \dim_{\mathbb{C}} H_i(X; \mathbb{C})$.

Attempt at equivariant Betti numbers

Let $\Gamma = \pi_1(X)$. Then $H_i(\widetilde{X}; \mathbb{C})$ is a module over the **group ring**

$$\mathbb{C}[\Gamma] = \bigl\{ \sum_{\gamma \in \Gamma} a_\gamma \gamma \mid \text{finite sum, } a_\gamma \in \mathbb{C} \bigr\}.$$

Pick a nice dimension of $\mathbb{C}[\Gamma]$ -modules and consider $\dim_{\mathbb{C}[\Gamma]} H_i(\widetilde{X};\mathbb{C})$.

Problem

Such $\dim_{\mathbb{C}[\Gamma]}$ might not exist: For $\Gamma = F_2$ the differential

$$C_1(\widetilde{S^1 \vee S^1}; \mathbb{C}) = \mathbb{C}[\Gamma]^2 \hookrightarrow \mathbb{C}[\Gamma] = C_0(\widetilde{S^1 \vee S^1}; \mathbb{C})$$

is injective. Hence you cannot have additivity of $\dim_{\mathbb{C}[\Gamma]}$.

 ℓ^2 -Betti numbers try to remedy this situation!

Group von Neumann algebra

$$\mathbb{C}[\Gamma] \subset \ell^{2}(\Gamma) = \{ \sum a_{\gamma} \gamma \mid \sum |a_{\gamma}|^{2} < \infty \}$$

$$L(\Gamma) = \{ T : \ell^{2}(\Gamma) \to \ell^{2}(\Gamma) \text{ bounded } | \forall_{\gamma \in \Gamma} T(\gamma x) = \gamma T(x) \}$$

 $\mathbb{C}[\Gamma]$ embeds (densely) into $L(\Gamma)$ as right multiplication operators.

Finite trace

$$\begin{array}{c}
\mathbb{C}[\Gamma] \longrightarrow L(\Gamma) \\
& \downarrow T \mapsto \operatorname{tr}_{\Gamma}(T) = \langle T(e), e \rangle \\
\mathbb{C}
\end{array}$$

Group von Neumann algebra

$$\mathbb{C}[\Gamma] \subset \ell^{2}(\Gamma) = \{ \sum a_{\gamma} \gamma \mid \sum |a_{\gamma}|^{2} < \infty \}$$

$$L(\Gamma) = \{ T : \ell^{2}(\Gamma) \to \ell^{2}(\Gamma) \text{ bounded } | \forall_{\gamma \in \Gamma} T(\gamma x) = \gamma T(x) \}$$

 $\mathbb{C}[\Gamma]$ embeds (densely) into $L(\Gamma)$ as right multiplication operators.

Finite trace

Matrix extension for $T = (T_{ij})$:

$$\operatorname{\mathsf{tr}}_{\Gamma}(\ell^2(\Gamma)^n \xrightarrow{\mathcal{T}} \ell^2(\Gamma)^n) := \sum_i \operatorname{\mathsf{tr}}_{\Gamma}(\mathcal{T}_{ii})$$

Trace property: $tr_{\Gamma}(ST) = tr_{\Gamma}(TS)$

Group von Neumann algebra

$$\mathbb{C}[\Gamma] \subset \ell^2(\Gamma) = \{ \sum a_{\gamma} \gamma \mid \sum |a_{\gamma}|^2 < \infty \}$$

$$L(\Gamma) = \{ T \colon \ell^2(\Gamma) \to \ell^2(\Gamma) \text{ bounded } | \forall_{\gamma \in \Gamma} T(\gamma x) = \gamma T(x) \}$$

 $\mathbb{C}[\Gamma]$ embeds (densely) into $L(\Gamma)$ as right multiplication operators.

Finite trace

$$\mathbb{C}[\Gamma] \xrightarrow{} L(\Gamma) \qquad \operatorname{tr}_{\Gamma}(T) = \langle T(e), e \rangle \qquad \operatorname{tr}_{\Gamma}(\ell^{2}(\Gamma)^{n} \xrightarrow{T} \ell^{2}(\Gamma)^{n}) := \sum_{i} \operatorname{tr}_{\Gamma}(T_{ii})$$

$$\mathbb{C} \qquad \operatorname{Trace property:} \operatorname{tr}_{\Gamma}(ST) = \operatorname{tr}_{\Gamma}(TS)$$

Matrix extension for $T = (T_{ii})$:

$$\operatorname{tr}_{\Gamma}(\ell^{2}(\Gamma)^{n} \xrightarrow{\mathcal{T}} \ell^{2}(\Gamma)^{n}) := \sum_{i} \operatorname{tr}_{\Gamma}(\mathcal{T}_{ii})$$

Trace property: $tr_{\Gamma}(ST) = tr_{\Gamma}(TS)$

von Neumann Dimension

$$\dim_{\Gamma}(A) := \operatorname{tr}_{\Gamma} \left(\operatorname{pr}_{A} \colon \ell^{2}(\Gamma)^{n} \to A \subset \ell^{2}(\Gamma)^{n} \right)$$

for a closed Γ -invariant subspace A.

Equivariant CW-complexes

We consider CW-complexes with cellular actions. The **cellular chain** complex $C_*(X)$ of a (free) Γ -CW-complex is a (free) $\mathbb{Z}[\Gamma]$ -chain complex.

ℓ^2 -Betti numbers (Atiyah, Dodziuk)

Let X be a free Γ -CW complex with cocompact skeleta.

$$\begin{split} \beta_n^{(2)}(X;\Gamma) &= \dim_{\Gamma} \big(\bar{H}^n(\hom_{\mathbb{Z}[\Gamma]}(C_*(X),\ell^2(\Gamma))\big) \quad \text{reduced cohomology!} \\ \beta_n^{(2)}(M) &= \beta_n^{(2)}(\widetilde{M};\pi_1(M)) \\ \beta_n^{(2)}(\Gamma) &= \beta_n^{(2)}(E\Gamma;\Gamma) \end{split}$$

Here $E\Gamma$ is a **classifying space** of Γ , that is, $E\Gamma \simeq *$ and $\Gamma \curvearrowright E\Gamma$ freely.

Equivariant CW-complexes

We consider CW-complexes with cellular actions. The **cellular chain** complex $C_*(X)$ of a (free) Γ -CW-complex is a (free) $\mathbb{Z}[\Gamma]$ -chain complex.

ℓ^2 -Betti numbers (Atiyah, Dodziuk)

Let X be a free Γ -CW complex with cocompact skeleta.

$$\begin{split} \beta_n^{(2)}(X;\Gamma) &= \dim_{\Gamma} \big(\bar{H}^n(\hom_{\mathbb{Z}[\Gamma]}(C_*(X),\ell^2(\Gamma)) \big) \quad \text{reduced cohomology!} \\ \beta_n^{(2)}(M) &= \beta_n^{(2)}(\widetilde{M};\pi_1(M)) \\ \beta_n^{(2)}(\Gamma) &= \beta_n^{(2)}(E\Gamma;\Gamma) \end{split}$$

Here $E\Gamma$ is a **classifying space** of Γ , that is, $E\Gamma \simeq *$ and $\Gamma \curvearrowright E\Gamma$ freely.

An example

Write
$$\Gamma = \pi_1(S^1) = \mathbb{Z} = \langle t \rangle$$
. Then $\beta_i^{(2)}(S^1) = 0$.

$$\mathsf{hom}_{\mathbb{Z}[\mathbb{Z}]}(\mathit{C}_*(\widetilde{\mathit{S}^1}),\ell^2(\mathbb{Z})) \cong \left(\ell^2(\mathbb{Z}) \xrightarrow{\cdot (t-1)} \ell^2(\mathbb{Z})\right)$$

Basic properties

- equivariant homotopy invariants
- ► Euler-Poincare formula
- ▶ Künneth formula
- ► Poincare duality

Basic properties

- equivariant homotopy invariants
- ► Euler-Poincare formula
- ► Künneth formula
- ► Poincare duality

ℓ^2 -Betti numbers and Euler characteristic

Number of *n*-cells in
$$\Gamma \setminus X = \dim_{\Gamma} \underbrace{(\operatorname{hom}_{\mathbb{Z}[\Gamma]}(C_n(X), \ell^2(\Gamma)))}_{=:C_{(2)}^n} \quad \bar{B}^i \hookrightarrow Z^i \longrightarrow \bar{H}^i$$

$$\chi(\Gamma \setminus X) = \sum_i (-1)^i \dim_{\Gamma}(C_{(2)}^i) = \sum_i (-1)^i (\dim_{\Gamma}(Z^i) + \dim_{\Gamma}(\bar{B}^{i+1}))$$

$$= \sum_i (-1)^i (\dim_{\Gamma}(\bar{B}^i) + \dim_{\Gamma}(\bar{H}^i) + \dim_{\Gamma}(\bar{B}^{i+1}))$$

$$= \sum_i (-1)^i \beta_i^{(2)}(X; \Gamma)$$

 $Z^i \hookrightarrow C^i_{(2)} \xrightarrow{\mathsf{weak}} \bar{B}^{i+1}$

Some theorems

- ▶ Λ, Γ < G lattices $\Rightarrow \beta_i^{(2)}(\Gamma) \operatorname{covol}(\Lambda) = \beta_i^{(2)}(\Lambda) \operatorname{covol}(\Gamma)$. (Gaboriau)
- $β_i^{(2)}(\Gamma) = 0$ for infinite amenable Γ. (Cheeger-Gromov)
- ▶ Vanishing of $\beta_i^{(2)}(\Gamma)$ is QI-invariant. (Pansu)

Two conjectures

- ▶ The ℓ^2 -Betti numbers of a finite CW complex with torsionfree fundamental groups are integers. (Atiyah conjecture)
- ▶ The ℓ^2 -Betti numbers of a closed aspherical manifold are concentrated in the middle dimension (**Singer conjecture**)

Atiyah vs. Singer

The Singer conjecture is about ℓ^2 -Betti numbers of groups whereas the Atiyah conjecture is about $\mathbb{C}[\Gamma]$ -modules and their Γ -dimension.

Kaplansky's conjectures

Direct finiteness (conjecture). ab = 1 in $\mathbb{C}[\Gamma]$ implies ba = 1.

Assume that Γ is torsionfree.

Idempotent conjecture. $p^2 = p$ in $\mathbb{C}[\Gamma]$ implies $p \in \{0, 1\}$.

Zero divisor conjecture. ab = 0 in $\mathbb{C}[\Gamma]$ implies a = 0 or b = 0.

The same statements are conjectured for $\mathbb{F}_p[\Gamma]$. In that case direct finiteness is known for sofic groups (Elek-Szabo).

Kaplansky's conjectures

Direct finiteness (conjecture). ab = 1 in $\mathbb{C}[\Gamma]$ implies ba = 1.

Assume that Γ is torsionfree.

Idempotent conjecture. $p^2 = p$ in $\mathbb{C}[\Gamma]$ implies $p \in \{0, 1\}$. **Zero divisor conjecture**. ab = 0 in $\mathbb{C}[\Gamma]$ implies a = 0 or b = 0.

The same statements are conjectured for $\mathbb{F}_p[\Gamma]$. In that case direct finiteness is known for sofic groups (Elek-Szabo).

Some methods

- \triangleright ℓ^2 -methods
- ▶ Finite-dimensional approximation
- ► Localization (later)

The approximation and localization methods are also available for $\mathbb{F}_p[\Gamma]$.

Zero divisor conjecture by ℓ^2

ZDC is implied by the **Atiyah conjecture** which translates into:

$$\dim_{\Gamma}(\ker(r_a)) \in \mathbb{N}$$
 for every $a \in \mathbb{C}[\Gamma]$.

$$ab = 0$$
 and $a \neq 0 \Rightarrow \dim_{\Gamma}(\ker(r_b : \ell^2(\Gamma) \to \ell^2(\Gamma))) > 0$
 $\Rightarrow \dim_{\Gamma}(\ker(r_b : \ell^2(\Gamma) \to \ell^2(\Gamma))) = 1$
 $\Rightarrow b = 0$

Zero divisor conjecture by ℓ^2

ZDC is implied by the Atiyah conjecture which translates into:

$$\dim_{\Gamma}(\ker(r_a)) \in \mathbb{N}$$
 for every $a \in \mathbb{C}[\Gamma]$.

$$ab = 0$$
 and $a \neq 0 \Rightarrow \dim_{\Gamma}(\ker(r_b : \ell^2(\Gamma) \to \ell^2(\Gamma))) > 0$
 $\Rightarrow \dim_{\Gamma}(\ker(r_b : \ell^2(\Gamma) \to \ell^2(\Gamma))) = 1$
 $\Rightarrow b = 0$

Direct finiteness by ℓ^2

$$K \hookrightarrow \ell^2(\Gamma) \xrightarrow[r_b]{\kappa_a} \ell^2(\Gamma)$$

$$\begin{split} \dim_{\Gamma}(\ell^2(\Gamma)) &= \dim_{\Gamma}(K) + \dim_{\Gamma}(K^{\perp}) = \dim_{\Gamma}(K) + \dim_{\Gamma}(\ell^2(\Gamma)) \\ &\Rightarrow \dim_{\Gamma}(K) = 0 \Rightarrow K = 0. \end{split}$$

Direct finiteness by approximation

Let Γ be **residually finite**:

$$\begin{cases} \Gamma = \Gamma_0 > \Gamma_1 > \Gamma_2 \dots \\ \Gamma_i < \Gamma \text{ normal and finite index} \\ \cap \Gamma_i = \{e\} \end{cases}$$

Works for $\mathbb{F}_p[\Gamma]$ too! **Elek-Szabo**: Direct finiteness for sofic groups.

Direct finiteness by approximation

Let Γ be **residually finite**:

$$\begin{cases} \Gamma = \Gamma_0 > \Gamma_1 > \Gamma_2 \dots \\ \Gamma_i < \Gamma \text{ normal and finite index} \\ \cap \Gamma_i = \{e\} \end{cases}$$

Works for $\mathbb{F}_p[\Gamma]$ too! **Elek-Szabo**: Direct finiteness for sofic groups.

Lück's approximation theorem

$$\dim_{\Gamma} \ker(r_{\mathsf{a}} \colon \ell^{2}(\Gamma) \to \ell^{2}(\Gamma)) = \lim_{i \to \infty} \frac{\dim_{\mathbb{C}} \ker(\overline{r_{\mathsf{a}}} \colon \mathbb{C}[\Gamma/\Gamma_{i}] \to \mathbb{C}[\Gamma/\Gamma_{i}])}{[\Gamma : \Gamma_{i}]}$$

for $a \in \mathbb{Z}[\Gamma]$

Approximation theorem (Lück)

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let X be a finite free Γ -CW complex. Then

$$\beta_n^{(2)}(X;\Gamma) = \lim_{i \to \infty} \frac{b_n(\Gamma_i \backslash X)}{[\Gamma : \Gamma_i]}$$

Version for universal coverings

Let M be a finite CW complex and $\pi_1(M) = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let $M_i \to M$ be the covering associated to Γ_i . Then

$$\beta_n^{(2)}(M) = \lim_{i \to \infty} \frac{b_n(M_i)}{[\Gamma : \Gamma_i]}$$

Version for groups only

Let $\Gamma=\Gamma_0>\Gamma_1>\dots$ be a residual chain. Assume that Γ admits a finite type classifying space. Then

$$\beta_n^{(2)}(\Gamma) = \lim_{i \to \infty} \frac{b_n(\Gamma_i)}{[\Gamma : \Gamma_i]}$$

Version for spaces

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let X be a finite free Γ -CW complex. Then

$$\beta_n^{(2)}(X;\Gamma) = \lim_{i \to \infty} \frac{b_n(\Gamma_i \backslash X)}{[\Gamma : \Gamma_i]}$$

Version for group rings

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Then

$$\dim_{\Gamma}(r_A \colon \ell^2(\Gamma)^d \to \ell^2(\Gamma)^d) = \lim_{i \to \infty} \frac{\dim_{\mathbb{C}} \ker(\overline{r_A} \colon \mathbb{C}[\Gamma/\Gamma_i]^d \to \mathbb{C}[\Gamma/\Gamma_i]^d)}{[\Gamma \colon \Gamma_i]}$$

for every matrix $A \in M_d(\mathbb{Z}[\Gamma])$.

Comparing chain complexes

Suppose X has d equivariant n-cells. Then

$$C_{(2)}^n := \mathsf{hom}_{\mathbb{Z}[\Gamma]}(C_n(X), \ell^2(\Gamma)) \cong \ell^2(\Gamma)^d$$

$$\mathsf{hom}_{\mathbb{Z}}(C_n(\Gamma \backslash X), \mathbb{C})) \cong \ell^2(\Gamma / \Gamma_i)^d = \mathbb{C}[\Gamma / \Gamma_i]^d.$$

The differentials in the second chain complex are the reductions of the ones in the first.

Comparing chain complexes

Suppose X has d equivariant n-cells. Then

$$\begin{split} C_{(2)}^n := \mathsf{hom}_{\mathbb{Z}[\Gamma]}(C_n(X), \ell^2(\Gamma)) &\cong \ell^2(\Gamma)^d \\ \mathsf{hom}_{\mathbb{Z}}(C_n(\Gamma \backslash X), \mathbb{C})) &\cong \ell^2(\Gamma / \Gamma_i)^d = \mathbb{C}[\Gamma / \Gamma_i]^d. \end{split}$$

The differentials in the second chain complex are the reductions of the ones in the first.

The Laplacian

$$\Delta^n := (d^n)^* \circ d^n + d^{n-1} \circ (d^{n-1})^* : C_{(2)}^n \to C_{(2)}^n$$

- ▶ If d^n is given by multiplication with $A \in M_{d,d'}(\mathbb{Z}[\Gamma])$, then $(d^n)^*$ is given by multiplication with $A^* \in M_{d',d}(\mathbb{Z}[\Gamma])$ obtained by transposition and replacing in each entry γ by γ^{-1} .
- ▶ Easy fact: $\ker(\Delta^n) \to \bar{H}^n(C^*_{(2)})$ is an isomorphism.

Let $A: \ell^2(\Gamma) \to \ell^2(\Gamma)$ be a positive Γ -equivariant operator.

Spectral calculus

$$Poly([0, ||A||]) \rightarrow L(\Gamma), p \mapsto p(A)$$

extends to bounded Borel functions on [0, ||A||].

Spectral measure

Riesz representation theorem $\Rightarrow \exists$ Borel probability measure μ supported on [0, ||A||]:

$$\int_{\mathbb{R}} f d\mu = \operatorname{tr}_{\Gamma}(f(A)).$$

Let $A: \ell^2(\Gamma) \to \ell^2(\Gamma)$ be a positive Γ -equivariant operator.

Spectral calculus

$$Poly([0, ||A||]) \rightarrow L(\Gamma), p \mapsto p(A)$$

extends to bounded Borel functions on [0, ||A||].

Spectral measure

Riesz representation theorem $\Rightarrow \exists$ Borel probability measure μ supported on [0, ||A||]:

$$\int_{\mathbb{R}} f d\mu = \operatorname{tr}_{\Gamma}(f(A)).$$

At zero

$$\chi_{\{0\}}(A) = \operatorname{pr}_{\ker(A)} \quad \mu(\{0\}) = \operatorname{tr}_{\Gamma}(\operatorname{pr}_{\ker(A)}) = \dim_{\Gamma}(\ker(A))$$

The case of finite Γ

$$\begin{split} |\Gamma| \operatorname{tr}_{\Gamma}(\operatorname{pr}_{\ker(A)}) &= |\Gamma| \langle \operatorname{pr}_{\ker(A)}(e), e \rangle = \sum_{\gamma \in \Gamma} \langle \operatorname{pr}_{\ker(A)}(\gamma), \gamma \rangle \\ &= \operatorname{tr}_{\mathbb{C}}(\operatorname{pr}_{\ker(A)}) = \dim_{\mathbb{C}}(\ker(A)) \end{split}$$

Approximation in terms of spectral measures

- $ightharpoonup \Gamma = \Gamma_1 > \Gamma_2 > \dots$ residual chain.
- ▶ Let $a \in \mathbb{Z}[\Gamma]$.
- ▶ μ spectral measure of r_a : $\ell^2(\Gamma) \to \ell^2(\Gamma)$, i.e.

$$\int_{\mathbb{D}} f d\mu = \operatorname{tr}_{\Gamma}(f(a)).$$

▶ μ_i spectral measure of the reduction $r_{\bar{s}} : \mathbb{C}[\Gamma/\Gamma_i] \to \mathbb{C}[\Gamma/\Gamma_i]$. All measures are supported on some [0, K].

$$\dim_{\Gamma}(\ker(r_{a})) = \lim_{i \to \infty} \frac{\dim_{\mathbb{C}} \ker(\mathbb{C}[\Gamma/\Gamma_{i}] \xrightarrow{\bar{r}_{a}} \mathbb{C}[\Gamma/\Gamma_{i}])}{[\Gamma : \Gamma_{i}]}$$

$$\updownarrow$$

$$\int_{\mathbb{D}} \chi_{\{0\}} d\mu = \mu(\{0\}) = \lim_{i \to \infty} \mu_{i}(\{0\}) = \lim_{i \to \infty} \int_{\mathbb{D}} \chi_{\{0\}} d\mu_{i}$$

Broad strategy

Spectrum around zero reveals something about the spectrum at zero.

Digression: Spectrum around zero

Chain complex in low degrees

Let Γ be a group with finite generating set $S = S^{-1}$. Let X be a classifying space whose 1-skeleton is the Cayley graph.

$$\underbrace{\mathsf{hom}_{\mathbb{Z}[\Gamma]}(\mathit{C}_{0}(X),\ell^{2}(\Gamma))}_{\ell^{2}(\Gamma)} \overset{d}{\to} \underbrace{\mathsf{hom}_{\mathbb{Z}[\Gamma]}(\mathit{C}_{1}(X),\ell^{2}(\Gamma))}_{\bigoplus_{S}\ell^{2}(\Gamma)} \to \cdots$$

starts the chain complex from which we compute $\beta_*^{(2)}(\Gamma)$.

Laplacian in degree 0 and its spectrum

$$\Delta = d^* \circ d \colon \ell^2(\Gamma) \to \ell^2(\Gamma)$$
 is right multiplication with

$$2|S|(1-\underbrace{\frac{1}{|S|}\sum_{s\in S}s})\in\mathbb{C}[\Gamma].$$

 $\operatorname{tr}_{\Gamma}(R^n)$ **return probability** of simple random walk on X after n steps. Its asymptotic is linked to the decay of the spectrum of Δ around zero.

An easy observation

For any $b = \sum b_{\gamma} \gamma \in \mathbb{C}[\Gamma]$ we have

$$\operatorname{tr}_{\Gamma}(b) = \operatorname{tr}_{\Gamma/\Gamma_i}(\bar{b}) \text{ for } i \geq i_0.$$

where i_0 is such that: $\gamma \in \Gamma \setminus \{e\}, \ b_{\gamma} \neq 0 \Rightarrow \gamma \not\in \Gamma_{i_0}$.

Weak convergence

Apply to
$$b=a^n$$
: $\int_{\mathbb{R}} x^n d\mu(x) = \operatorname{tr}_{\Gamma}(a^n) = \lim_{i \to \infty} \operatorname{tr}_{\Gamma/\Gamma_i}(a^n) = \int_{\mathbb{R}} x^n d\mu_i(x)$

Also true if $f(x) = x^n$ is replaced by a continuous function.

Caveat

Let
$$\nu_i = i \cdot \chi_{[0,1/i]} d\lambda$$
. Then

$$u_i \to \delta_0 \text{ weakly but } 0 = \nu_i(\{0\}) \not\to \delta_0(\{0\}) = 1.$$

Basic measure theory

$$\limsup_{i \to \infty} \mu_i(\{0\}) \le \limsup_{i \to \infty} \int_{\mathbb{R}} f d\mu_i$$

$$= \lim_{i \to \infty} \int_{\mathbb{R}} f d\mu_i = \int_{\mathbb{R}} f d\mu \le \mu(\{0\}) + \epsilon$$

Similarly for closed A and open U:

$$\limsup_{i \to \infty} \mu_i(A) \leq \mu(A) \text{ and } \liminf_{i \to \infty} \mu_i(U) \geq \mu(U)$$

Already proven: Kazhdan's inequality

Let X be a finite CW complex and $\pi_1(X) = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let $X_i \to X$ be the covering associated to Γ_i . Then

$$\limsup_{i\to\infty}\frac{b_n(X_i)}{[\Gamma:\Gamma_i]}\leq\beta_n^{(2)}(X)$$

Basic measure theory

$$\limsup_{i \to \infty} \mu_i(\{0\}) \leq \limsup_{i \to \infty} \int_{\mathbb{R}} f d\mu_i$$

$$= \lim_{i \to \infty} \int_{\mathbb{R}} f d\mu_i = \int_{\mathbb{R}} f d\mu \leq \mu(\{0\}) + \epsilon$$

Similarly for closed A and open U:

$$\limsup_{i\to\infty}\mu_i(A)\leq\mu(A) \text{ and } \liminf_{i\to\infty}\mu_i(U)\geq\mu(U)$$

Already proven: Kazhdan's inequality

Let X be a finite CW complex and $\pi_1(X) = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let $X_i \to X$ be the covering associated to Γ_i . Then

$$\limsup_{i\to\infty}\frac{b_n(X_i)}{[\Gamma:\Gamma_i]}\leq\beta_n^{(2)}(X)$$

Still to do

$$\liminf_{i\to\infty}\mu_i(\{0\})\geq\mu(\{0\})$$

Integrality

- ▶ **Fix** i and let $n = [\Gamma : \Gamma_i]$. Let $0 = \lambda_1 = \ldots = \lambda_m < \lambda_{m+1} \leq \ldots \leq \lambda_n$ be the eigenvalues (with multiplicity) of $\bar{r}_a : \mathbb{C}[\Gamma/\Gamma_i] \to \mathbb{C}[\Gamma/\Gamma_i]$.
- ▶ Characteristic polynomial $p(z) = z^m q(z)$, $q \in \mathbb{Z}[z]$.
- $\lambda_{m+1} \cdots \lambda_n = q(0) \geq 1.$

Small eigenvalues

- ▶ Let $N(\epsilon)$ be the number of eigenvalues in $(0, \epsilon)$.
- ▶ $1 \le \lambda_{m+1} \cdots \lambda_n \le \epsilon^{N(\epsilon)} \|\bar{r}_a\|^n \le \epsilon^{N(\epsilon)} \cdot \text{const}^n$.
- $\mu_i((0,\epsilon)) = \frac{N(\epsilon)}{n} \leq \frac{\text{const}}{|\log \epsilon|}$. Now unfix i.

Integrality

- ▶ **Fix** *i* and let $n = [\Gamma : \Gamma_i]$. Let $0 = \lambda_1 = \ldots = \lambda_m < \lambda_{m+1} \leq \ldots \leq \lambda_n$ be the eigenvalues (with multiplicity) of $\bar{r}_a : \mathbb{C}[\Gamma/\Gamma_i] \to \mathbb{C}[\Gamma/\Gamma_i]$.
- ▶ Characteristic polynomial $p(z) = z^m q(z)$, $q \in \mathbb{Z}[z]$.
- $\lambda_{m+1}\cdots\lambda_n=q(0)>1.$

Small eigenvalues

- ▶ Let $N(\epsilon)$ be the number of eigenvalues in $(0, \epsilon)$.
- $1 < \lambda_{m+1} \cdots \lambda_n < \epsilon^{N(\epsilon)} \| \bar{r}_{a} \|^n < \epsilon^{N(\epsilon)} \cdot \text{const}^n.$
- $\mu_i((0,\epsilon)) = \frac{N(\epsilon)}{n} \leq \frac{\text{const}}{|\log \epsilon|}$. Now unfix *i*.

Conclusion of proof

$$\liminf_{i\to\infty}\mu_i(\{0\})=\liminf_{i\to\infty}\big(\mu_i([0,\epsilon))-\mu_i((0,\epsilon))\big)\geq \liminf_{i\to\infty}\underbrace{\mu_i([0,\epsilon))}_{=\mu_i((-\epsilon,\epsilon))}-\frac{\mathrm{const}}{|\log\epsilon|}$$

Finally, let
$$\epsilon \to 0!$$
 $\geq \mu(\{0\}) - \frac{\mathrm{const}}{|\log \epsilon|}$

Approximation theorem (Lück)

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let X be a finite free Γ -CW complex. Then

$$\beta_n^{(2)}(X;\Gamma) = \lim_{i \to \infty} \frac{b_n(\Gamma_i \backslash X)}{[\Gamma : \Gamma_i]}$$

Version for universal coverings

Let X be a finite CW complex and $\pi_1(X) = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let $X_i \to X$ be the covering associated to Γ_i . Then

$$\beta_n^{(2)}(X) = \lim_{i \to \infty} \frac{b_n(X_i)}{[\Gamma : \Gamma_i]}$$

Version for groups only

Let $\Gamma=\Gamma_0>\Gamma_1>\dots$ be a residual chain. Assume that Γ admits a finite type classifying space. Then

$$\beta_n^{(2)}(\Gamma) = \lim_{i \to \infty} \frac{b_n(\Gamma_i)}{[\Gamma : \Gamma_i]}$$

Characteristic p

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let X be a finite free Γ -CW complex. What is

$$\lim_{i\to\infty}\frac{b_n(\Gamma_i\backslash X;\mathbb{F}_p)}{[\Gamma:\Gamma_i]}=?$$

- ► Existence?
- ▶ Independence of (Γ_i) ?
- $\triangleright > \beta_n^{(2)}(X;\Gamma)$?

Need to find potential limit candidates, at least in specific situations!

Characteristic p

Let $\Gamma = \Gamma_0 > \Gamma_1 > \dots$ be a residual chain. Let X be a finite free Γ -CW complex. What is

$$\lim_{i\to\infty}\frac{b_n(\Gamma_i\backslash X;\mathbb{F}_p)}{[\Gamma:\Gamma_i]}=?$$

- ► Existence?
- ▶ Independence of (Γ_i) ?
- $\triangleright > \beta_n^{(2)}(X;\Gamma)$?

Need to find potential limit candidates, at least in specific situations!

Results by Lackenby in degree 1

Let Γ be finitely presented and $b_1(\Gamma) > 0$. If the above limit is > 0 for a specific residual chain and some prime, then Γ is **large**.

Linnell's work on the Atiyah conjecture

His work is based on localization techniques.

- ▶ $\mathcal{U}(\Gamma)$ is the algebra of Γ -equivariant unbounded operators $\ell^2(\Gamma) \to \ell^2(\Gamma)$.
- $\blacktriangleright \mathcal{D}(\Gamma)$ is the division closure of $\mathbb{C}[\Gamma]$ inside $\mathcal{U}(\Gamma)$; serves as a localization of $\mathbb{C}[\Gamma]$.

Linnell's work on the Atiyah conjecture

His work is based on localization techniques.

- ▶ $\mathcal{U}(\Gamma)$ is the algebra of Γ -equivariant unbounded operators $\ell^2(\Gamma) \to \ell^2(\Gamma)$.
- $\blacktriangleright \mathcal{D}(\Gamma)$ is the division closure of $\mathbb{C}[\Gamma]$ inside $\mathcal{U}(\Gamma)$; serves as a localization of $\mathbb{C}[\Gamma]$.
- ▶ For torsionfree solvable groups $\mathcal{D}(\Gamma)$ is a division ring and

$$\beta_i^{(2)}(X;\Gamma) = \dim_{\mathcal{D}(\Gamma)} H^i(\hom_{\mathbb{Z}[\Gamma]}(C_*(X),\mathcal{D}(\Gamma)) \in \mathbb{N}.$$

▶ **Goal:** Characterize $\mathcal{D}(\Gamma)$ as an algebraic localization which can be done for $\mathbb{F}_p[\Gamma]$ as well.

Amenable groups

Group rings of elementary amenable groups

Let Γ be a torsionfree elementary amenable group. Then $\mathbb{F}_p[\Gamma]$ has no zero divisors (Kropholler-Linnell-Moody, Linnell) and its Ore localization $Q(\mathbb{F}_p[\Gamma])$ is a division ring.

Approximation

Let Γ be a torsionfree elementary amenable group and (Γ_i) be a residual chain. Let X be a finite free Γ -CW complex. Then

$$\lim_{i\to\infty}\frac{b_n(\Gamma_i\backslash X;\mathbb{F}_p)}{[\Gamma:\Gamma_i]}=\dim_{Q(\mathbb{F}_p[\Gamma])}\Big(H_n\big(Q(\mathbb{F}_p[\Gamma])\otimes_{\mathbb{F}_p[\Gamma]}C_*(X)\big)\Big).$$

(Linnell-Lück-S.)

Algebraic description of ℓ^2 -Betti numbers

Replace \mathbb{F}_p by \mathbb{C} above and one obtains an algebraic description of ℓ^2 -Betti numbers in this case.

p-adic analytic groups

(Completed) group rings

Up to finite index, $\mathbb{F}_{\rho}[[\Gamma]] = \lim_{i \to \infty} \mathbb{F}_{\rho}[\Gamma/\Gamma_i]$ has no zero-divisors, and its Ore localization is a division ring.

Approximation

Let $\Gamma \hookrightarrow GL_n(\mathbb{Z}_p)$ be an embedding and $\Gamma_i = \ker(\Gamma \to GL_n(\mathbb{Z}/p^i))$. Let X be a finite free Γ -CW complex. Then

$$\lim_{i\to\infty}\frac{b_n(\Gamma_i\backslash X;\mathbb{F}_p)}{[\Gamma:\Gamma_i]}=\mathsf{rk}_{\mathbb{F}_p[[\Gamma]]}\Big(H_n\big(\mathbb{F}_p[[\Gamma]]\otimes_{\mathbb{F}_p[\Gamma]}C_*(X)\big)\Big)\in\mathbb{Q}.$$

(Calegari-Emerton; Bergeron-Linnell-Lück-S.)

Algebraic description of ℓ^2 -Betti numbers

Replace \mathbb{F}_p by \mathbb{C} above and one obtains an algebraic description of ℓ^2 -Betti numbers in this case.

Open problem

Can one use this to prove the zero-divisor and Atiyah conjecture for torsionfree linear groups?

Residually torsionfree nilpotent groups

Orderable groups

Such groups possess a strict total ordering invariant under left and right translations

Malcev-Neumann construction

Let k be a field. The ring of formal power series $k[[\Gamma]]$ with well-ordered support is a skew field containing $k[\Gamma]$.

Approximation

Let $\Gamma = \Gamma_0 > \Gamma_1 > \cdots$ be a normal chain such that $\bigcap_i \Gamma_i = \{1\}$ and each Γ/Γ_i is torsion-free nilpotent. Set $H_i = \Gamma_i \Gamma^{p^i}$.

$$\dim_{\mathbb{F}_p((\Gamma))} \big(H_n(\mathbb{F}_p((\Gamma)) \otimes_{\mathbb{F}_p[\Gamma]} C_*(X, \mathbb{F}_p)) \big) = \lim_{i \to \infty} \frac{b_n(H_i \setminus X; \mathbb{F}_p)}{[\Gamma : H_i]}.$$

(Bergeron-Linnell-Lück-S.)

Algebraic description of ℓ^2 -Betti numbers

Replace \mathbb{F}_p by \mathbb{C} above and one obtains an algebraic description of ℓ^2 -Betti numbers in this case.

ℓ^2 -Betti numbers of locally compact groups

 \exists Theory of ℓ^2 -Betti numbers for unimodular locally compact groups due to Davis-Dymara-Januszkiewicz-Okun and Petersen.

Structure theory

A locally compact group G modulo its amenable radical R(G) is a product of a semisimple Lie group and a totally disconnected group. (**Hilbert's 5th problem**).

Focus on totally disconnected groups

$$\beta_n^{(2)}(G,\mu) = \begin{cases} 0 & \text{if } R(G) \text{ is not compact;} \\ \beta_n^{(2)}(G/R(G), \operatorname{pr}_* \mu) & \text{otherwise.} \end{cases}$$

- ▶ $\beta_n^{(2)}(G)$ for semisimple Lie group G can be studied by ℓ^2 -Betti numbers of its lattices (Borel).
- ► Künneth formula reduces computations to totally disconnected groups.

von Neumann algebra L(G) of G

G acts on $L^2(G,\mu)$ by translations from the left and the right. The analog of $\mathbb{C}[\Gamma] \hookrightarrow L(\Gamma)$ is

$$\lambda \colon C_0(G) \to \mathcal{B}(L^2(G,\mu))^G =: L(G)$$
$$\lambda(\phi)(f)(h) = \int_G \phi(g) f(g^{-1}h) d\mu(g).$$

Semifinite trace on L(G) for totally disconnected G

The analog of $tr_{\Gamma}|_{\mathbb{C}[\Gamma]}$ does not extend to all of L(G).

$$\operatorname{tr}_G \colon C_0(G) \to \mathbb{C}, \ \phi \mapsto \phi(e)$$

 $e \in \mathcal{G}$ has a neighborhood basis of compact-open subgroups. Define

$$\operatorname{tr}_{(G,\mu)} \colon L(G)_+ \to [0,\infty], \ T \mapsto \sup_{K <_m G} \langle T(\chi_K), \chi_K \rangle / \mu(K)^2$$

Note that $\operatorname{tr}_{(G,\mu)}(\lambda(\chi_K)) = 1$.

von Neumann dimension

For a *G*-invariant closed subspace $A \subset L^2(G)$,

$$\dim_{(G,\mu)}(A):=\operatorname{tr}_{(G,\mu)}(\operatorname{pr}_A)\in[0,\infty]$$

and similarly for $A \subset L^2(G)^d$. In general, $\dim_G(L^2(G)) = \infty$.

Projections from compact-open subgroups

Let K < G be compact-open. The projection onto the subspace of left K-invariant functions $^KL^2(G,\mu) \subset L^2(G,\mu)$ is $\lambda(\frac{1}{\mu(K)}\chi_K)$.

$$\dim_{(G,\mu)}({}^{K}L^{2}(G,\mu)) = \frac{1}{\mu(K)}$$

Extension to arbitrary L(G)-modules

An extension of $\dim_{(G,\mu)}$ to arbitrary L(G)-modules in the spirit of Lück's dimension theory for finite von Neumann algebras is possible (Petersen).

G-CW-complexes

A proper smooth G-CW complex is a CW-complex X with a cellular G-action such that each cell has a compact-open stabilizer. As a G-module, the cellular chain complex looks like

$$C_n(X) \cong \bigoplus_{K \in \mathcal{F}_n} \mathbb{Z}[G/K].$$

A **geometric model** of G is a proper smooth contractible G-CW complex that has finitely many G-orbits of cells in each dimension.

E.g. Affine Bruhat-Tits buildings of reductive p-adic groups are such.

Cayley-Abels graph

Let K < G be compact-open. Let $S \subset G$ be a bi-K-invariant compact generating set of G. The Cayley-Abels Graph is

- ▶ Vertices: cosets G/K
- ▶ Edges from *gK* to *gsK*.
- ▶ There are one equivariant 0-cell and $|K \setminus S/K|$ -equivariant 1-cells.

ℓ^2 -Betti numbers

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)}\left(\bar{H}_c^n(G,L^2(G))\right)$$

If G acts on a proper smooth contractible G-CW complex with finitely many G-orbits of cells in each dimension, then

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)} \left(\bar{H}^n \left(\hom_G(C_*(X), L^2(G)) \right) \right)$$

ℓ^2 -Betti numbers

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)}\left(\bar{H}_c^n(G,L^2(G))\right)$$

If G acts on a proper smooth contractible G-CW complex with finitely many G-orbits of cells in each dimension, then

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)} \left(\bar{H}^n \left(\hom_G(C_*(X), L^2(G)) \right) \right)$$

Remark

If K_1, \ldots, K_d are the stabilizers of the G-orbits of n-cells, then

$$\mathsf{hom}_{\mathsf{G}}(\mathsf{C}_{\mathsf{n}}(\mathsf{X}),\mathsf{L}^2(\mathsf{G})) \cong {}^{\mathsf{K}_1}\mathsf{L}^2(\mathsf{G}) \oplus \ldots \oplus {}^{\mathsf{K}_{\mathsf{d}}}\mathsf{L}^2(\mathsf{G}).$$

Thus,

$$\beta_n^{(2)}(G) \leq \frac{1}{\mu(K_1)} + \ldots + \frac{1}{\mu(K_d)}.$$

ℓ^2 -Betti numbers

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)}\left(\bar{H}_c^n(G,L^2(G))\right)$$

If G acts on a proper smooth contractible G-CW complex with finitely many G-orbits of cells in each dimension, then

$$\beta_n^{(2)}(G,\mu) = \dim_{(G,\mu)} \left(\bar{H}^n \left(\hom_G(C_*(X), L^2(G)) \right) \right)$$

Remark

If K_1, \ldots, K_d are the stabilizers of the G-orbits of n-cells, then

$$\mathsf{hom}_{G}(\mathit{C}_{n}(X), \mathit{L}^{2}(\mathit{G})) \cong {}^{\mathit{K}_{1}}\mathit{L}^{2}(\mathit{G}) \oplus \ldots \oplus {}^{\mathit{K}_{d}}\mathit{L}^{2}(\mathit{G}).$$

Thus,

$$\beta_n^{(2)}(G) \leq \frac{1}{\mu(K_1)} + \ldots + \frac{1}{\mu(K_d)}.$$

ℓ^2 -Betti numbers of a lattice $\Gamma < G$

$$\beta_n^{(2)}(\Gamma) = \operatorname{covol}(\Gamma)\beta_n^{(2)}(G,\mu)$$
 (Kyed-Petersen-Vaes).

Example

Let $G = SL_3(\mathbb{Q}_p)$ and X be the 2-dim. Bruhat-Tits building of G.

- \triangleright one equivariant 2-cell with stabilizer B, the Iwahori subgroup of G;
- ▶ three equivariant 1-cells corresponding to the edges of the fundamental chamber. The stabilizer of each splits into p + 1 many cosets of B.

Normalizing $\mu(B) = 1$, we get $\beta_2^{(2)}(G) \ge 1 - 3/(p+1)$.

Example

Let $G = SL_3(\mathbb{Q}_p)$ and X be the 2-dim. Bruhat-Tits building of G.

- \triangleright one equivariant 2-cell with stabilizer B, the Iwahori subgroup of G;
- ▶ three equivariant 1-cells corresponding to the edges of the fundamental chamber. The stabilizer of each splits into p+1 many cosets of B.

Normalizing $\mu(B) = 1$, we get $\beta_2^{(2)}(G) \ge 1 - 3/(p+1)$.

Application to deficiency of lattices

For every lattice $\Gamma < G = SL_3(\mathbb{Q}_p)$, we have

$$\mathsf{def}(\Gamma) \leq 1 - \beta_2^{(2)}(\Gamma) = 1 - \beta_2^{(2)}(G)\operatorname{covol}(\Gamma) \leq 1 - \left(1 - \frac{3}{n+1}\right)\operatorname{covol}(\Gamma).$$

▶ Let X be the Cayley complex of a presentation. Then

$$g - r = 1 - \chi(X) = 1 - \beta_0^{(2)}(\Gamma) + \beta_1^{(2)}(\Gamma) - \beta_2^{(2)}(\widetilde{X}; \Gamma)$$

= 1 + \beta_1^{(2)}(\Gamma) - \beta_2^{(2)}(\widetilde{X}; \Gamma).

▶ But $\beta_2^{(2)}(\widetilde{X};\Gamma) > \beta_2^{(2)}(\Gamma)$ and $\beta_1^{(2)}(\Gamma) = 0$ by property (T).

The space of subgroups

The set Sub_G of closed subgroups of G can be endowed with a topology (Chabauty topology) that makes it compact. $H_n \to H$ iff

- ▶ for $h \in H$ there is $h_n \in H_n$ with $h = \lim h_n$.
- ▶ for convergent (h_{n_k}) with have $\lim h_{n_k} \in H$.

Invariant random subgroups

A conjugation invariant Borel probability measure on Sub_G is called an invariant random subgroup (IRS). The set of IRS becomes a compact space with respect to weak convergence.

Lattices and normal subgroups as IRS

Let $\Gamma < G$ be a lattice. The pushforward of the Haar measure under $G/\Gamma \to \operatorname{Sub}_G$, $g\Gamma \to g\Gamma g^{-1}$, is the IRS ν_Γ associated to Γ . The point measure concentrated at a closed normal subgroup is an IRS.

Stuck-Zimmer theorem

Every non-atomic ergodic IRS in a connected simple Lie group of higher rank is of the form ν_{Γ} for a lattice Γ .

Levit: also true for simple algebraic groups over non-archimedean fields.

Margulis' normal subgroup theorem

Every normal subgroup of a lattice Γ in a higher rank simple Lie group is either finite or finite index in Γ .

Stuck-Zimmer theorem

Every non-atomic ergodic IRS in a connected simple Lie group of higher rank is of the form ν_{Γ} for a lattice Γ .

Levit: also true for simple algebraic groups over non-archimedean fields.

Margulis' normal subgroup theorem

Every normal subgroup of a lattice Γ in a higher rank simple Lie group is either finite or finite index in Γ .

$Stuck-Zimmer \Rightarrow Margulis$

Let $\Lambda \triangleleft \Gamma < G$.

- ▶ Consider pushforward ν of $G/\Gamma \to \operatorname{Sub}_G$, $g\Lambda \mapsto g\Lambda g^{-1}$.
- ν atomic? Then $\Lambda < Z(G)$ center.
- ▶ Otherwise Λ is a lattice by Stuck-Zimmer, thus $[\Gamma : \Lambda] < \infty$.

Automatic convergence (7s)

If (Γ_i) is a sequence of lattices in a higher rank simple Lie groups with $\operatorname{covol}(\Gamma_i) \to \infty$, then $\nu_{\Gamma_i} \to \delta_e$. (Also true in the p-adic case and in positive characteristic provided uniform discreteness by Gelander-Levit)

Uniform discreteness

A family of lattices is uniformly discrete, if there is a neighborhood of $e \in G$ that intersects every conjugate of a element in the family trivially.

Lattice approximation in Lie groups (7s)

Let G be a non-compact simple Lie group. If (Γ_i) is a uniformly discrete sequence of lattices whose IRS converge to δ_e , then

$$\beta_n^{(2)}(G,\mu) = \lim_{i \to \infty} \frac{b_n(\Gamma_i)}{\operatorname{covol}(\Gamma_i)}.$$

Lattice approximation in t.d. groups (Petersen-S.-Thom)

Assume that G totally disconnected has a geometric model. Let (Γ_i) be a sequence of lattices whose IRS converge to δ_e . Then

$$\beta_n^{(2)}(G,\mu) \leq \liminf_{i \to \infty} \frac{b_n(\Gamma_i)}{\operatorname{covol}(\Gamma_i)}.$$

If, in addition, (Γ_i) is uniformly discrete, then

$$\beta_n^{(2)}(G,\mu) = \lim_{i \to \infty} \frac{b_n(\Gamma_i)}{\operatorname{covol}(\Gamma_i)}.$$

Corollary

Let **G** be a simple algebraic group. Let $G = \mathbf{G}(\mathbb{Q}_p)$. If (Γ_i) is a sequence of lattices in G such that $\operatorname{covol}(\Gamma_i) \to \infty$, then

$$\beta_n^{(2)}(G,\mu) \leq \liminf_{i \to \infty} \frac{b_n(\Gamma_i)}{\operatorname{covol}(\Gamma_i)}.$$

Remark

In the discrete case the opposite inequality (Kazhdan's inequality) holds by general considerations.