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1 Introduction

In 1970 Alexander Grothendieck published an article (see Grothendieck, 1970), where he
asked if a homomorphism u : G −→ H between discrete groups needs to be an isomor-
phism, if its profinite completion û : Ĝ −→ Ĥ is an isomorphism. To be more precise, he
asked about conditions G and H have to provide in order to conclude that u itself is an
isomorphism if û is. A first answer was given by Bridson and Grunewald (see Bridson and
Grunewald, 2004), who constructed a group Γ as direct product of two residually finite,
hyperbolic (i.e. finitely presented) groups and a finitely presented subgroup P of infinite

index in Γ, such that the inclusion u : P ↪→ Γ induces an isomorphism û : P̂ −→ Γ̂, but
P and Γ are not abstractly isomorphic.
This might be a good motivation to ask about (weaker) similiarities between abstract

groups G and H, which have isomorphic profinite completions Ĝ and Ĥ, so in particular
we ask about profinite invariants. That is where Betti numbers and L2-Betti numbers
come into play. Alan Reid showed in his article (see Reid, 2013) that the first Betti
number is a profinite invariant for finitely generated groups and concluded, by using
Lück’s Approximation Theorem, that the first L2-Betti number is a profinite invariant
for finitely presented residually finite groups.
Naturally this result arises the question about L2-Betti numbers being a profinite invari-
ant in higher dimensions as well, at least for finitely presented residually finite groups.
Menny Aka discussed in his paper (see Aka, 2010) a similar question. He showed that
Kazhdan’s property (T), which was introduced in the mid 60’s by D. Kazhdan for locally
compact groups in order to show that a large class of lattices is finitely generated, is
no profinite invariant. For this purpose he constructed two groups Γ0 ≤ Spin(1, n)(OK)
and Λ0 ≤ Spin(5, n − 4)(OK) (OK denotes the ring of integers of the number field

K := Q(
√
d), d ∈ N square free) with isomorphic profinite completions Γ̂0

∼= Λ̂0 and
showed that Λ0 admits Property (T) while Γ0 does not. Actually we will use the same
groups to show that the L2-Betti numbers in every even dimension ≥ 6 are no profinite
invariant.
This work is organized as follows. In Chapter 2 we introduce L2-Betti numbers of Hilbert
chain complexes, G-CW-complexes and groups which are countable, discrete and have
a finite type model for EG. Chapter 3 provides a review about projective limits and its
basic properties in order to introduce the profinite completion of a group. In Chapter 4
we eventually prove the main results of this work. The first part of this chapter deals
with the first L2-Betti numbers and is a more detailed elaboration of Reid’s observation.
To be more precise we will show the following . . .

1.0.1 Theorem. Let G and H be finitely presented residually finite groups with isomor-
phic profinite completions Ĝ ∼= Ĥ. Then b

(2)
1 (G) = b

(2)
1 (H).

The second part deals with L2-Betti numbers in higher dimensions and will make use
of the groups constructed by Aka to show . . .

1.0.2 Theorem. For every natural number p ≥ 6 there are finitely presented residually
finite groups Gp and Hp with Ĝp

∼= Ĥp but b
(2)
p (Gp) 6= b

(2)
p (Hp).
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1 Introduction

Notation

In this work we rely on the following notation. The category of (topological) groups
with (continuous) group homomorphisms as morphisms is denoted by Grp (resp. TGrp)
and the category of G-spaces with G-maps as morphisms by GTop.
If A is a (proper) subset of B we write A ⊆ B (resp. A ⊂ B) and if H is a (proper)
subgroup of G we write H ≤ G (resp. H < G). In order to express that H is additionally
of finite index (resp. open) in G we write H ≤f G (resp. H ≤o G). The direct sum is
denoted by ⊕, the tensor product by ⊗, the product by

∏
(resp. ×), the coproduct by∐

, and the disjoint union of sets by t.
Of course we use the common notation for the natural numbers N, the rational integers
Z, the rational numbers Q and the real numbers R. Additionally we denote the set of
prime numbers by P ⊂ N, the p-adic integers by Zp and the unique field with pd elements
by Fpd for any p ∈ P and d ∈ N. Furthermore the units of a ring R are denoted by R×.
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2 L2-Betti numbers

The goal of this chapter is the introduction of L2-Betti numbers of a countable discrete
group G with finite type model for EG, where EG denotes the classifying space of G.
Recall that the p-th Betti number bp(X) of a finite CW-complex X is defined by
dimC(Hp(X;C)), which is a homotopy invariant of X. Now the L2-Betti numbers can
be seen as a refined version of the ordinary Betti numbers, which take the universal
covering X̃ and the action of the fundamental group π1(X) on X̃ into account.

2.1 L2-Betti numbers of Hilbert chain complexes

In this section, which is mainly based on Chapter 1.1 of Lück, 2013, we introduce the
necessary input about Hilbert modules in order to define the von Neumann dimension
of a Hilbert module V as the von Neumann trace of the identity idV . This allows us
to define the p-th L2-Betti number of a Hilbert chain complex C∗ as the von Neumann
dimension of the reduced p-th L2-Homology of C∗.

We assume in this section that G is a countable discrete group.

2.1.1 Definition. (Hilbert module)

a) A Hilbert N (G)-module is a Hilbert space V with a linear isometric G-action, such
that there is a Hilbert space H together with an isometric linear G-embedding of V
into the tensor product of Hilbert spaces H ⊗ l2(G) whose G-action is defined by

g0 ·

(
h⊗

∑
g∈G

cgg

)
:= h⊗

∑
g∈G

cgg0g

b) Let V,W be Hilbert N (G)-modules. A bounded G-equivariant operator f : V −→ W
is called map of Hilbert N (G)-modules.

c) A Hilbert N (G)-module V is said to be finitely generated, if there is some n ∈ N0

and a surjective map
⊕n

i=1 l
2(G) −→ V of Hilbert N (G)-modules.
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2 L2-Betti numbers

2.1.2 Definition. (von Neumann trace)
Let V be a Hilbert N (G)-module and f : V −→ V a positive (i.e. 〈f(v), v〉 ≥ 0)
endomorphism. By Definition 2.1.1 we can choose a Hilbert spaceH with isometric linear
G-embedding V ↪→ H ⊗ l2(G), a G-equivariant projection p : H ⊗ l2(G) −→ H ⊗ l2(G)
and an isometric G-isomorphism u : Im(p)

∼−→ V . We define the positive operator
f̄ : H ⊗ l2(G) −→ H ⊗ l2(G) by the composition

f̄ : H ⊗ l2(G)
p−→ Im(p)

u−→ V
f−→ V

u−1

−→ Im(p) ↪→ H ⊗ l2(G).

Now let {bi}i∈I be a Hilbert basis of H. Then the von Neumann trace of f is given by

trN (G)(f) :=
∑
i∈I

〈f̄(bi ⊗ 1), bi ⊗ 1〉 ∈ [0,∞],

where 1 ∈ l2(G) is the unit element. Note that this definition is independent of the
choice of H, {bi}i∈I , p and u (c.f. Lück, 2013).

2.1.3 Definition. (von Neumann dimension)
Let V be a Hilbert-N (G)-module. The von Neumann dimension of V is defined by

dimN (G)(V ) := trN (G)(idV ) ∈ [0,∞].

2.1.4 Definition. (Hilbert chain complex)
A Hilbert N (G)-chain complex C∗ is a sequence of maps of Hilbert N (G)-modules

· · · cp+2−→ Cp+1
cp+1−→ Cp

cp−→ Cp−1
cp−1−→ · · ·

such that cn ◦ cn+1 = 0 for every n ∈ Z. C∗ is said to be positive if Cn = 0 for n < 0.

2.1.5 Definition. (L2-homology and L2-Betti numbers)
If C∗ is a Hilbert N (G)-chain complex, we define the (reduced) p-th L2-homology of C∗
by

H(2)
p (C∗) := ker(cp)/Im(cp+1)

and the p-th L2-Betti number of C∗ by

b(2)
p (C∗) := dimN (G)(H

(2)
p (C∗)).

Note that we divide by the closure of the image in order to ensure that H
(2)
p (C∗) is a

Hilbert space and inherits the G-action from Cp.
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2.2 Cellular L2-Betti numbers

2.2 Cellular L2-Betti numbers

Now we want to define L2-Betti numbers for a free G-CW-complex X of finite type.
A special case of a G-CW-complex is a regular covering of an ordinary CW-complex.
In order to apply Section 1, we need to assign a suitable Hilbert chain complex to a
given G-CW-complex X. This section is mainly based on Chapter 1.1, 1.2 in ibid. and
Chapter 2 in Kammeyer, 2015.

Let us assume again that G is a countable discrete group in this section.

2.2.1 Definition. (G-CW-complex)
A G-CW-complex is a G-space X together with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that

• X carries the colimit topology with respect to this filtration.

• for each n ≥ 0 there is a pushout

∐
i∈In

G/Hi × Sn−1 Xn−1

∐
i∈In

G/Hi ×Dn Xn

∐
i∈In qi

in

∐
i∈In Qi

jn

in GTop with stabiliser subgroups Hi in G for every i in the index set In.

The space Xn is called the n-skeleton of X. An equivariant open n-dimensional cell is a
G-component of Xn\Xn−1, i.e. the preimage of a path component of G\(Xn\Xn−1). Its
closure is an equivariant closed n-dimensional cell.

2.2.2 Definition. A G-CW-complex X is called

– finite, if it has finitely many equivariant cells.

– of finite type, if it has finitely many equivariant n-dimensional cells for every n ≥ 0.

– proper, if all stabiliser groups Hi are finite.

– free, if all stabiliser groups Hi are trivial.

2.2.3 Proposition. If X is a G-CW-complex, the cellular chain complex (CCW
∗ (X), dCW∗ )

is canonically a chain complex of left Z[G]-modules.

9



2 L2-Betti numbers

Proof. For every g ∈ G the multiplication from left with g induces a homeomoprhism

mg : (Xn, Xn−1)
∼−→ (Xn, Xn−1)

and hence an automorphism

Hn(mg) : CCW
n (X)

∼−→ CCW
n (X).

Furthermore we have

Hn(mg) ◦Hn(mh) = Hn(mg ◦mh) = Hn(mgh)

for g, h ∈ G and Hn(m1) = idCCW
n (X), if 1 ∈ G is the neutral element. So G acts on

CCW
n (X) for every n ≥ 0 and we found a Z[G]-module structure. Since dCWn is the

boundary map in the triple sequence of (Xn, Xn−1, Xn−2), we see by naturality of the
boundary map that

CCW
n (X) CCW

n−1(X)

CCW
n (X) CCW

n−1(X)

dCW
n

Hn(mg)

dCW
n

Hn−1(mg)

commutes and hence that dCWn is Z[G]-linear for every n ≥ 0.

2.2.4 Remark. In the following we consider l2(G) as C[G]-Z[G]-bimodule by

g0 ·

(∑
g∈G

cgg

)
:=
∑
g∈G

cg(g0g)

and (∑
g∈G

cgg

)
· g0 :=

∑
g∈G

cg(gg0).

2.2.5 Definition. (cellular L2-chain complex)
If X is a proper G-CW-complex of finite type, then the cellular L2-chain complex of X
is defined as

C(2)
∗ (X) = l2(G)⊗Z[G] C

CW
∗ (X)

with differentials d
(2)
∗ = idl2(G)⊗dCW∗ .

2.2.6 Theorem. The cellular L2-chain complex of a free G-CW-complex of finite type
is a chain complex of Hilbert N (G)-modules.

10



2.2 Cellular L2-Betti numbers

Proof. Let us fix pushouts

∐
i∈In

G× Sn−1 Xn−1

∐
i∈In

G×Dn Xn

∐
i∈In qi

in

∐
i∈In Qi

jn

whose existence is required by Definition 2.2.1. Since in is an embedding as a closed
neighborhood deformation retract, we can use the Mayer-Vietoris theorem for pushouts
and obtain

CCW
n (X) = Hn(Xn, Xn−1) ∼= Hn(

∐
i∈In

G×Dn,
∐
i∈In

G× Sn−1)

∼=
⊕
i∈In

Hn(G×Dn, G× Sn−1)

∼=
⊕
i∈In

Hn(
∐
g∈G

Dn,
∐
g∈G

Sn−1)

∼=
⊕
i∈In

⊕
g∈G

Hn(Dn, Sn−1)

∼=
⊕
i∈In

⊕
g∈G

Z

∼=
⊕
i∈In

Z[G]

for every n ≥ 0, where ”∼=” means isomorphic as Z[G]-modules. So the n-th cellular
L2-chain module is given by

C(2)
n (X) = l2(G)⊗Z[G] C

CW
n (X) ∼= l2(G)⊗Z[G]

(⊕
i∈In

Z[G]

)

∼=

(⊕
i∈In

l2(G)⊗Z[G] Z[G]

)
∼=

⊕
i∈In

l2(G).

Hence we can pull back the inner product and the linear isometricG-action of
⊕

i∈In Z[G],

which turns C
(2)
n (X) into a Hilbert N (G)-module. If we choose a different G-pushout,

we obtain another Z[G]-isomorphism, but the two differ only by the composition of an
automorphism which becomes a G-equivariant unitary after applying the L2-completion
l2(G) ⊗Z[G] ( · ). Furthermore the differentials d

(2)
n = idl2(G)⊗dCWn are maps of Hilbert

N (G)-modules, which is shown in Proposition 2.19 of Kammeyer, 2015.
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2 L2-Betti numbers

2.2.7 Definition. (L2-homology and L2-Betti numbers)

LetX be a freeG-CW-complex of finite type with cellular L2-chain complex (C
(2)
∗ (X), d

(2)
∗ ).

a) The p-th (reduced) L2-homology of X is the Hilbert N (G)-module

H(2)
p (X) := ker(d(2)

p )/Im(d
(2)
p+1).

b) The p-th L2-Betti number of X is

b(2)
p (X) := dimN (G) H

(2)
p (X).
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2.3 Classifying spaces and L2-Betti numbers of groups

2.3 Classifying spaces and L2-Betti numbers of groups

In this section we assign a classifying space EG to a given countable and discrete group
G, which can be seen as universal free G-CW-complex in some sense. So if EG turns out
to have a model of finite type, we can define the L2-Betti numbers of G as the L2-Betti
numbers of EG. This section is mainly based on Chapter 2.3 in Kammeyer, 2015.

We assume again, unless otherwise stated, that G is a countable discrete group in this
section.

2.3.1 Definition. (weakly contractible)
A space X is called weakly contractible, if every map f : Sn−1 −→ X extends to a map
f̄ : Dn −→ X for all n ∈ N.

2.3.2 Proposition. For a free G-CW-complex E the following are equivalent:

i) For every free G-CW-complex X there exists a unique continuous map X −→ E up
to G-homotopy.

ii) E is weakly contractible.

This statement is proven in Chapter 2.3 of ibid.

2.3.3 Definition. (classifying space)
A free G-CW-complex E which satisfies i) or ii) in Proposition 2.3.2 is called a model
for EG and the quotient space BG := G\EG is called the classifying space of G.

2.3.4 Proposition. There is a model for EG of G and any two of them are G-homotopy
equivalent.

A proof of this statement is given in Chapter 2.3 of ibid.

Finally we are able to define the L2-Betti numbers for a countable discrete group with
finite type model for EG.

2.3.5 Definition. (L2-Betti numbers)
Let G have a finite type model for EG. Then we define the p-th L2-Betti number of G
by

b(2)
p (G) := b(2)

p (EG)

for every p ∈ N0.

Let us recall for a moment the definition of ordinary Betti numbers of a group G.

2.3.6 Definition. (Betti numbers)
The i-th Betti number of a group G is the i-th Betti number of its classifying space BG,
so

bi(G) := bi(BG) = dimQ(Hi(BG;Q)).

for every i ∈ N0.
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2 L2-Betti numbers

The following theorem will be key in Chapter 4.1, where we want to prove that the
first L2-Betti numbers are a profinite invariant. It goes back to Wolfgang Lück, who
showed that for finitely presented, residually finite groups, the L2-Betti numbers are in
fact an asymptotic invariant of towers of finite index subgroups.

2.3.7 Theorem. (Lück’s Approximation Theorem)
Let G be a finitely presented group with classifying space EG and

G = G1 > G2 > . . . > Gm > . . .

a sequence of finite index subgroups, which are normal in G and satisfy
⋂∞
m=1 Gm = 1.

If EG has a finite (p+ 1)-skeleton, then

b(2)
p (G) = lim

m→∞

bp(Gm)

[G : Gm]

for every p ∈ N0.

A proof of this theorem can be found in Lück, 1994.

Another result we need is the following Lemma, which helps us to find the non-
vanishing L2-Betti numbers of a lattice in a connected semisimple Lie group. It can be
found in Kammeyer, 2014.

2.3.8 Lemma. Let G be a connected semisimple Lie group, K ≤ G a maximal com-
pact subgroup and Γ ⊆ G any lattice. Then b

(2)
p (Γ) 6= 0 if and only if δ(G) = 0 and

dim(G/K) = 2p, where δ(G) := rankC(G)− rankC(K) denotes the deficiency of G.

14



3 Profinite completion

In this chapter we want to clarify the term ‘profinite invariant‘. For that purpose we need
to describe the profinite completion, which gives a way to encode all finite quotients of a
group. Furthermore we want to elaborate some basic properties about profinite groups
and profinite completions for later purposes. Note that this chapter is based on Chapter
1 and 2 of Ribes, 2010.

3.1 Projective limits and its properties

Let us recall the definition and basic properties of projective limits. Although most of
the time we will be dealing with topological groups, we will study projective limits in a
more general category: the category of topological spaces. Replacing the word space by
group (resp. ring), map by homomorphism of groups (resp. homomorphism of rings) and
homeomorphism by isomorphism of topological groups (resp. isomorphism of topological
rings), one obtains the corresponding definitions and statements for topological groups
(resp. topological rings).

3.1.1 Definition. (Projective system and projective limit)

a) We call a partially ordered set I directed if for any two elements i, j ∈ I there is
some k ∈ I with k ≥ i and k ≥ j.

b) A projective system of topological spaces is a tripel (Xi, ϕij, I) consisting of a partially
ordered set I, a family of topological spaces {Xi}i∈I and a family of continuous maps
ϕij : Xi −→ Xj whenever i ≥ j, such that:

– ϕii = idXi
for every i ∈ I,

– ϕjk ◦ ϕij = ϕik whenever i ≥ j ≥ k.

c) A projective limit (X,Φi) of a projective system (Xi, ϕij, I) of topological spaces is
a topological space X with compatible continuous maps Φi : X −→ Xi for all i ∈ I,
where compatible means ϕij ◦ Φi = Φj for i ≥ j, satisfying the following universal
property:
For any topological space Y and family of compatible continuous maps Ψi : Y −→ Xi

(i ∈ I) there is a unique continuous map Ψ: Y −→ X such that Φi ◦ Ψ = Ψi for
every i ∈ I.

Xi

Y X

Xj

Ψi

Ψj

Φi

Φj

ϕij
∃! Ψ

15



3 Profinite completion

The maps Φi are called projections, although they are not necessarily surjective.

3.1.2 Proposition. If (Xi, ϕij, I) is a projective system of topological spaces, then

a) there exists a projective limit of (Xi, ϕij, I).

b) the projective limit of (Xi, ϕij, I) is unique up to a natural homeomorphism and we
denote it by lim←− i∈IXi or just lim←−Xi.

Proof. a) Consider

X := {(xi) ∈
∏
i∈I

Xi | ∀i ≥ j : ϕij(xi) = xj}

equipped with the subspace topology of the product topology. ThenX is a topological
space and the restriction of the canonical projections

∏
i∈I Xi −→ Xj to X yield a

continuous map Φi : X −→ Xj for every j ∈ I, which are compatible by definition
of X. The universal property for X is now a direct consequence of the universal
property for the direct product and the fact that we consider families of compatible
maps.

b) If (X,Φi) and (Y,Ψi) are both projective limits of (Xi, ϕij, I), then the universal
property gives us continuous maps Φ: X −→ Y and Ψ: Y −→ X such that

Ψi ◦ Φ = Φi and Φi ◦Ψ = Ψi

for all i ∈ I. But then

Φi ◦ (Ψ ◦ Φ) = Φi and Ψi ◦ (Φ ◦Ψ) = Ψi

for all i ∈ I. So by uniqueness of continuous maps with this property we conclude
Ψ ◦ Φ = idX and Φ ◦Ψ = idY .

3.1.3 Proposition. If (Xi, ϕij, I) is a projective system of totally disconnected compact
Hausdorff spaces, then lim←−Xi is a totally disconnected compact Hausdorff space.

Proof. First note that
∏

i∈I Xi is compact by Tychonoff’s theorem and recall the de-
scription of lim←−Xi as

{(xi) ∈
∏
i∈I

Xi | ∀i ≥ j : ϕij(xi) = xj}.

If pj :
∏

i∈I Xi −→ Xj is the projection for j ∈ I we see that

lim←−Xi =
⋂
i≥j

E(ϕij ◦ pi, pj),

where E(−,−) denotes the equaliser of two maps. Since the equaliser of two continuous
maps into a Hausdorff space is closed, we can conclude that lim←−Xi is a closed subset

16



3.1 Projective limits and its properties

of the compact space
∏

i∈I Xi and hence compact. The rest of the statement should
be clear, since products of totally disconnected (resp. Hausdorff) spaces are totally
disconnected (resp. Hausdorff) and subspaces of totally disconnected (resp. Hausdorff)
spaces are totally disconnected (resp. Hausdorff) as well.

3.1.4 Proposition. If (Xi, ϕij, I) is a projective system of nonempty compact Hausdorff
spaces, then lim←−Xi is nonempty.

Proof. For j ∈ I let us define

Yj := {(xi) ∈
∏
i∈I

Xi | ∀k ≤ j : ϕjk(xj) = xk}

and observe that
lim←−Xi =

⋂
j∈I

Yj.

Since
∏

i∈I Xi is compact by Tychonoff’s theorem, it suffices to show that {Yj}j∈I is a
family of closed subsets which has the finite intersection property. First of all let us
convince ourselves that Yj is nonempty for all j ∈ I. The axiom of choice guarantees
the existence of xj ∈ Xj and xi ∈ Xi for i � j. Hence, we find (yi) as an element of Yj,
where

yi :=


xj if i = j,

xi if i � j,

ϕji(xj) if i ≤ j.

Furthermore each Yj is a closed subspace of
∏

i∈I Xi. To see this, let (xi) ∈ (
∏

i∈I Xi)\Yj.
Then there exists k ≤ j with ϕjk(xj) 6= xk. Since Xk is Hausdorff, we can find disjoint
open neighborhoods U of ϕjk(xj) and V of xk in Xk. So W :=

∏
i∈IWi is an open

neighborhood of (xi) in
∏

i∈I Xi, where

Wi :=


V if i = k,

ϕ−1
jk (U) if i = j,

Xi if i 6= j, k.

But W ∩ Yj = ∅, since for (yi) ∈ W we have

U 3 ϕjk(yj) 6= yk ∈ V

by disjointness of U and V . Now let J ⊂ I determine an arbitrary finite subcollection
{Yj}j∈J . Since I is directed, we can find inductively some l ∈ I with j ≤ l for all j ∈ J .
Note that if j ≤ j′, the relation ϕjk ◦ ϕj′j = ϕj′k for k ≤ j implies Yj′ ⊆ Yj. Hence we
obtain

∅ 6= Yl ⊆
⋂
j∈J

Yj

and this finally shows the claim.
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3 Profinite completion

3.1.5 Remark. a) In fact lim←− is a functor from the category of projective systems of
topological spaces over a fixed directed set I to the category of topological spaces.
A morphim Θ: (Xi, ϕij, I) −→ (Yi, ψij, I) in the category of projective systems is
a family of continuous maps Θi : Xi −→ Yi, we call them components of Θ, which
satisfy ψij ◦ Θi = Θj ◦ ϕij whenever i ≥ j. If (X,Φi) = lim←−Xi and (Y,Ψi) = lim←−Yi
denote the projective limits, we obtain compatible continuous maps Θi◦Φi : X −→ Yi
which induce a continuous map

lim←− i∈IΘi = lim←−Θ: lim←−Xi −→ lim←−Yi

by universal property of lim←−Yi. Explicitly, lim←−Θ is given by lim←−Θ((xi)) = (Θi(xi)).

Xi Yi

X Y

Xj Yj

Ψi

Ψj

Φi

Φj

ψijϕij

Θi

Θj

∃! lim←−Θ

b) If Θ: (Xi, ϕij, I) −→ (Yi, ψij, I) is a map of projective systems with embeddings
Θi : Xi ↪→ Yi, then lim←−Θ: lim←−Xi −→ lim←−Yi is an embedding as well. Continuity is
given by construction and injectivity is obvious by its explicit description. So we
have to see that lim←−Θ sends open sets to open sets in Im(lim←−Θ). By definition of

lim←−Xi as subspace of
∏

i∈I Xi a basis of lim←−Xi is given by open sets like

lim←−Xi ∩

[∏
i∈S

Ui ×
∏
j∈Sc

Xj

]
,

for any finite subset S of I and open subsets Ui of Xi (i ∈ S). So the equality

lim←−Θ

(
lim←−Xi ∩

[∏
i∈S

Ui ×
∏
j∈Sc

Xj

])
= Im(lim←−Θ) ∩

(∏
i∈S

Θi(Ui)×
∏
j∈Sc

Yj

)

implies the claim.

3.1.6 Lemma. Let Θ: (Xi, ϕij, I) −→ (Yi, ψij, I) be a map of projective systems of
compact Hausdorff spaces with surjective components Θi : Xi −→ Yi. Then

lim←−Θ: lim←−Xi −→ lim←−Yi

is surjective.
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3.1 Projective limits and its properties

Proof. Let (yi) ∈ lim←−Yi. Surjectivity of Θi tells us that X̃i := Θ−1
i (yi) is a nonempty

subspace of Xi for every i ∈ I. Since Yi is Hausdorff, any point in Yi is closed. Therefore
X̃i is compact as closed subset of a compact space. In fact we found a projective system
(X̃i, ϕij|X̃i

, I) of nonempty compact Hausdorff spaces, since ϕij(X̃i) ⊆ X̃j. So Remark

3.1.5 b) allows us to identify lim←− X̃i with its image in lim←−Xi under the embedding induced

by the inclusions X̃i ↪→ Xi and Proposition 3.1.4 tells us that lim←− X̃i is nonempty. Hence

there is some (xi) ∈ lim←− X̃i ⊆ lim←−Xi with

lim←−Θ((xi))
3.1.5a)

= (Θi(xi)) = (yi).

3.1.7 Corollary. Let (Xi, ϕij, I) be a projective system of compact Hausdorff spaces and
Y a compact Hausdorff space. If ψi : Y −→ Xi are compatible continuous surjections
(i ∈ I), then the induced map Ψ: Y −→ lim←−Xi is surjective.

Proof. We can consider the maps ψi as components of a map ψ : (Y, idY , I) −→ (Xi, ϕij, I)
of projective systems. Then it is easy to verify that lim←−ψ = Ψ and Lemma 3.1.6 gives
the claim.

3.1.8 Lemma. Let (Xi, ϕij, I) be a projective system of topological spaces such that
lim←−Xi 6= ∅ and Ψi : Y −→ Xi a family of compatible continuous surjections from a

topological space Y (i ∈ I). Then the image of the induced map Ψ: Y −→ lim←−Xi is a
dense subspace of lim←−Xi.

Proof. Consider a basic open subset

V = lim←−Xi ∩

(∏
i∈S

Vi ×
∏
j∈Sc

Xj

)

of lim←−Xi, where S is any finite subset of I and Vi is an open subset of Xi for every i ∈ S.
Since I is directed and S is finite there is some k ∈ I with k ≥ i for every i ∈ S. Now
let (xi) some arbitrary element in V . By surjectivity of Ψk we can find some y ∈ Y with
Ψk(y) = xk. But then Ψ(y) is in V since for i ∈ S we have

Ψ(y)i = Ψi(y) = ϕki ◦Ψk(y) = ϕki(xk) = xi ∈ Vi.

Hence we showed that Im(f) ∩ V 6= ∅ and since V was an arbitrary basic open set in
lim←−Xi the claim follows.

3.1.9 Lemma. Let (Xi, ϕij, I) be a projective system of compact Hausdorff spaces,
X := lim←−Xi and Φi : X −→ Xi the projections.

a) If Y ⊆ X closed, then Y = lim←−Φi(Y ).
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3 Profinite completion

b) If Y ⊆ X, then Y = lim←−Φi(Y ).

Proof. The inclusions ιi : Φi(Y ) ↪→ Xi for i ∈ I are the components of a map

ι : (Φi(Y ), ϕij|Φi(Y )
, I) −→ (Xi, ϕij, I)

of projective systems. Remark 3.1.5 b) tells us that lim←− ι : lim←−Φi(Y ) −→ X is an embed-

ding, which allows us to identify lim←−Φi(Y ) with its image in X. Moreover, restricting the

projections Φi to Y yields a family of compatible continuous maps Φi|Y : Y −→ Φi(Y ),

which induce a continuous map f : Y −→ lim←−Φi(Y ). It is injective since

f((xj)) = (Φi((xj)) = (xi).

and it is easy to check that

f

(
Y ∩

[∏
i∈S

Ui ×
∏
j∈Sc

Xj

])
= Im(f) ∩

(∏
i∈S

[Φi(Y ) ∩ Ui]×
∏
j∈Sc

Φj(Y )

)

for any finite subset S of I and open subsets Ui of Xi (i ∈ S). So we found another
embedding f : Y ↪→ lim←−Φi(Y ). Observe that the composition of these embeddings is the

natural inclusion of Y into X which means that Y is a subspace of lim←−Φi(Y ) under this
identification.

a) Note that Y is compact as closed subset of the compact space X. So Φi(Y ) is compact
for every i ∈ I as image of a compact space under a continuous map. On top of that
Y and Φi(Y ) are Hausdorff spaces for every i ∈ I as subspaces of the Hausdorff
spaces X and Xi. Using Corollary 3.1.7 we see that f is surjective and we conclude
Y = lim←−Φi(Y ).

b) First of all note that the case Y = ∅ is trivial. In order to see that Y ⊆ lim←−Φi(Y ) we

show that lim←−Φi(Y ) is a closed subset of X. Let (xi) ∈ X \ lim←−Φi(Y ), which means

that there is some k ∈ I such that xk /∈ Φk(Y ). Since Xk is Hausdorff, there are
disjoint open neighborhoods U of xk and V of Φk(Y ). Then(

U ×
∏
j 6=k

Xj

)
∩X

is an open neighborhood of (xi) in X which does not intersect lim←−Φi(Y ). By assump-

tion ∅ 6= Y ⊆ lim←−Φi(Y ), so we can apply Lemma 3.1.8 to f and see that Y is a dense

subspace of lim←−Φi(Y ). Therefore the closure of Y in lim←−Φi(Y ) is all of lim←−Φi(Y ) and

the same holds for the closure Y in X.
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3.1 Projective limits and its properties

3.1.10 Definition. (cofinal)
For a directed set I we call a subset J ⊆ I cofinal in I if for any i ∈ I there is some
j ∈ J with j ≥ i.

3.1.11 Lemma. Let (Xi, ϕij, I) a projective system of compact Hausdorff spaces and J
cofinal in I. Then (Xi, ϕij, J) is as well a projective system of compact Hausdorff spaces
and

lim←− i∈IXi
∼= lim←− j∈JXj.

Proof. First of all observe that J is as well directed since it is cofinal in I and therefore
(Xi, ϕij, J) is obviously a projective system. On top of that we can find ji ∈ J for any
i ∈ I such that ji ≥ i. Let us denote the projections lim←− i∈IXi −→ Xi by Φi for i ∈ I.
So the compatible family of continuous maps ψi : lim←− j∈JXj −→ Xi for i ∈ I, which are
defined as the composition

lim←− j∈JXj

Φji−→ Xji

ϕjii−→ Xi,

induce a continuous map
Φ: lim←− j∈JXj −→ lim←− i∈IXi.

Note that the definition of ψi does not depend on the chosen index ji since the maps ϕij
are compatible. Φ is injective since

Φ((xj)) = (yi) =⇒ yj = xj ∀j ∈ J,

and it is surjective since (xj) ∈ lim←− j∈JXj is a preimage for (xi) ∈ lim←− i∈IXi. So Φ is a
homeomorphism as continuous bijection between compact Hausdorff spaces.
Observe that the inverse of Φ is given by the map Ψ: lim←− i∈IXi −→ lim←− j∈JXj which is
induced by the family of projections Φj : lim←− i∈IXi −→ Xj for j ∈ J .
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3 Profinite completion

3.2 Profinite groups and profinite completion of groups

The preliminary work of the last section enables us to introduce profinite groups as
projective limit of finite groups. Later we will see some further characterisations of them,
for example as totally disconnected, compact groups. So there are many topological
groups which are not profinite, but we will find a profinite completion of an arbitrary
group by taking the profinite limit of all finite quotients of it.

3.2.1 Definition. (Profinite group)
If (Gi, ϕij, I) is a projective system of finite groups endowed with the discrete topology,
then we call lim←−Gi a profinite group.

3.2.2 Lemma. Let (Gi, ϕij, I) be a projective system of finite groups endowed with
the discrete topology, G = lim←−Gi and Φi : G −→ Gi the projections for i ∈ I. Then

{ker(Φi) | i ∈ I} is a neighborhood basis of 1 ∈ G.

Proof. By defintion of G as subspace of
∏

i∈I Gi a neighborhood basis of 1 ∈ G is given
by sets of the form  ∏

i∈I\{i1,...,in}

Gi

×
 ∏
i∈{i1,...,in}

{1Gi
}

 ∩G
for some n ∈ N and i1, ..., in ∈ I. Since I is directed there is i0 ∈ I with i0 ≥ i1, ..., in
and by definiton of G we see

ker(Φi0) =

 ∏
i∈I\{i0}

Gi

× {1Gi0
}

∩G ⊆
 ∏

i∈I\{i1,...,in}

Gi

×
 ∏
i∈{i1,...,in}

{1Gi
}

∩G
which implies the claim.

3.2.3 Definition. (Core)
Let G be a group and H ≤ G a subgroup. We call

HG :=
⋂
g∈G

gHg−1 (1)

the core of H in G.

3.2.4 Lemma. Let G be a group and H ≤ G a subgroup. Then the core HG of H in G
is a normal subgroup of G which is contained in H and HG is of finite index in G if and
only if H is of finite index in G. Furthermore if G is a compact topological group and
H an open subgroup of G, then HG is open in G as well.

Proof. The fact that HG is a normal subgroup in G which is contained in H should be
obvious. So if H is not of finite index in G, then HG can’t be either. Therefore let us
assume now that H is of finite index in G and observe that we have a surjection

s : G/H −→ {gHg−1 | g ∈ G}, gH 7−→ gHg−1.
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3.2 Profinite groups and profinite completion of groups

Note that s is well-defined since

g1H = g2H =⇒ g1Hg
−1
1 = g1HH

−1g−1
1 = g2HH

−1g−1
2 = g2Hg

−1
2

for any g1, g2 ∈ G. So by finiteness of G/H we see that the intersection in (1) is in fact
finite and since H is of finite index in G every conjugate gHg−1 is of finite index as well.
Hence HG is a finite intersection of finite index subgroups and therefore itself of finite
index. Now let H be open in the compact group G. Then H is of finite index and again
the intersection in (1) is finite. Furthermore gHg−1 is open in G for every g ∈ G as
homeomorphic image of H under conjugation with g. This proves the claim.

3.2.5 Lemma. Let X be a compact Hausdorff space. For every x ∈ X the connected
component C(x) of x is the intersection of all clopen (i.e. closed and open) neighborhoods
of x.

Proof. Let x ∈ X, U be the set of all clopen neighborhoods of x and A :=
⋂
U∈U U .

Obviously every clopen neighborhood of x contains its connected component C(x), so
C(x) ⊆ A. Hence it suffices to show that A is connected. For that purpose let A = U∪V
with U ∩ V = ∅ and U, V closed in A. Since A is closed in X we have that U, V are also
closed in X and hence compact. Furthermore X is Hausdorff, so by compactness and
disjointness of U and V we can find open sets Ũ , Ṽ with U ⊆ Ũ , V ⊆ Ṽ and Ũ ∩ Ṽ = ∅.
Therefore

[X \ (Ũ ∪ Ṽ )] ∩ A = ∅

and since X \ (Ũ ∪ Ṽ ) is closed we can find a finite subset V ⊆ U such that

[X \ (Ũ ∪ Ṽ )] ∩B = ∅ (2)

with B :=
⋂
U∈V U . Note that B is a clopen neighborhood of x since V is finite. Fur-

thermore x ∈ (B∩ Ũ)∪ (B∩ Ṽ )
(2)
= B, so w.l.o.g we can assume that x ∈ B∩ Ũ . Observe

that B ∩ Ũ is clopen since B ∩ Ũ = [X \ (B ∩ Ṽ )] ∩ B, so (B ∩ Ũ) ∈ U . Therefore

A ⊆ B ∩ Ũ ⊆ Ũ and we can conclude that A ∩ V ⊆ A ∩ Ṽ = ∅ by disjointness of Ũ and
Ṽ . Thus V = ∅ and A is connected.

3.2.6 Proposition. Every totally disconnected group G is Hausdorff.

Proof. If G is totally disconnected the connected component C(e) of the neutral element
e ∈ G is {e}. So, as every connected component, {e} is closed in G. Now consider the
continuous map

f : G×G −→ G, (g, h) 7−→ gh−1

and observe that the diagonal ∆ := {(g, g) ∈ G × G | g ∈ G} is the preimage of {e}
under f . Hence ∆ is closed in G×G and therefore G is Hausdorff.

Finally we are able to prove some further characterisations of profinite groups.

3.2.7 Theorem. For a topological group G the following statements are equivalent.
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3 Profinite completion

a) G is a profinite group.

b) G is compact and totally disconnected.

c) G is compact and 1 ∈ G admits a neighborhood basis U consisting of open normal
subgroups of G and

⋂
U∈U U = 1.

d) 1 ∈ G admits a neighborhood basis U consisting of open normal subgroups of G with
finite index and G ∼= lim←− U∈UG/U .

Proof. a) ⇒ b): Let G be profinite, so G = lim←−Gi for a projective system (Gi, ϕij, I)
of finite discrete groups. So by assumption Gi is compact and totally disconnected for
every i ∈ I and so is G by Proposition 3.1.3.
b) ⇒ c): Let G be a compact and totally disconnected group and U an open neigh-
borhood of 1 ∈ G. First we want to find some clopen neighborhood V of 1 which is
contained in U . For that purpose consider the set U of all clopen neighborhoods of 1.
Then Lemma 3.2.5 tells us that

{1} =
⋂
X∈U

X

since G is totally disconnected. Furthermore G\U is closed and (G\U)∩(
⋂
X∈U X) = ∅,

so by compactness of G we can conclude that there is some finite subset V ⊆ U such that
(G \ U) ∩ (

⋂
X∈V X) = ∅. Hence V :=

⋂
X∈V X does the job. Now we show that there is

some open normal subgroup W of G which is contained in V . Consider C := (G\V )∩V 2

and note that C is closed in G and hence compact. Now let x ∈ V arbitrary, so
x ∈ G \ C. Since multiplication in G is continuous and G \ C is open in G, we can
find open neighborhoods Vx of x and Sx of 1 such that Vx, Sx ⊆ V and VxSx ⊆ G \ C.
Now compactness of V tells us, that we can find finitely many x1, . . . , xn such that⋃n
i=1 Vxi = V . Let S :=

⋂n
i=1 Sxi and consider T := S ∩ S−1, which is a symmetric (i.e.

T = T−1) open neighborhood of 1, contained in V and satisfies V T ⊆ G \ C. On the
other hand we have V T ⊆ V 2, so we can conclude that V T ∩ (G \ V ) = ∅ which means
that V T ⊆ V . So by induction we see that V T n ⊆ V for every n ∈ N and since T is
symmetric we find R :=

⋃
n∈N T

n as an open subgroup of G which is contained in V .
Now let W :=

⋂
g∈G gRg

−1 be the core of R in G. Since R is open and G compact we
see by Lemma 3.2.4 that W is an open normal subgroup of G which satisfies

W ⊆ R ⊆ V R ⊆
⋃
n∈N

V T n ⊆ V.

c) ⇒ d): Let U be as in c) and note that by compactness of G every U ∈ U is of finite
index. We find a projective system (G/U, πUV ,U) of finite discrete groups using the
partial order

U ≥ V :⇐⇒ U ⊆ V

on U and the natural projections πUV : G/U −→ G/V for U ≥ V . Since the canonical
projections πU : G −→ G/U for U ∈ U are compatible, we obtain an induced continuous
homomorphism

Φ: G −→ lim←− U∈UG/U, g 7−→ (gU)U∈U .
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3.2 Profinite groups and profinite completion of groups

By assumption G and G/U are compact Hausdorff spaces for every U ∈ U so we can
use Corollary 3.1.7 to see that Φ is surjective. Furthermore

ker(Φ) =
⋂
U∈U

U = 1,

so Φ is a continuous bijection between compact Hausdorff spaces and hence a homeo-
morphism. Therefore it is an isomorphism of topological groups.
d) ⇒ a): Trivial.

Now let G be an abstract group. In the following we will construct a profinite group
which is closely related to G. For that purpose let NG be the set of all normal finite
index subgroups of G. We can define a partial order on NG by

M ≥ N :⇐⇒ M ⊆ N

which turns NG into a directed set, since two normal finite index subgroups N and M
have M ∩ N as common upper bound. So we can use NG as index set of a projective
system of topological groups (G/N, πMN ,NG), where πMN : G/M −→ G/N are the
canonical projections for M ≥ N and the finite groups G/N are equipped with the
discrete topology for every N ∈ NG.

3.2.8 Definition. (Profinite completion)
The profinite group lim←−N∈NG

G/N is called the profinite completion of G and denoted

by Ĝ.

In order to make sense of the term profinite completion, we have to find a suitable
topology on G which turns it into a topological group and yields a natural continuous
homomorphism G −→ Ĝ. So it would be helpful to have compatible continuous ho-
momorphisms πN : G −→ G/N for N ∈ NG, since then the universal property of the
projective limit does the rest.

3.2.9 Definition. (Profinite topology)
The initial topology on G with respect to the family of canonical projections {πN}N∈NG

is called the profinite topology on G.

3.2.10 Proposition. A neighborhood basis of 1 in the profinite topology of G is given
by NG and it turns G into a topological group.

Proof. By definition as initial topology of {πN}N∈NG
a basis of the profinite topology

is given by finite intersections of sets like π−1
N (gN) = gN for N ∈ NG. If such a finite

intersection wants to contain 1 ∈ G, it has to be a finite intersection of elements in NG.
But NG is closed under taking finite intersections, so it is again an element of NG. This
shows that NG is a neighborhood basis of 1 in the profinite topology. The fact that this
topology turns G into a topological group is shown in Proposition 1 of Chapter 3 in
Bourbaki, 1989.
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3 Profinite completion

Now we have a topological group G and a family of compatible continuous homomor-
phisms πN : G −→ G/N for every N ∈ NG, which induce a continuous homomorphism

i : G −→ lim←−G/N = Ĝ with

ker(i) =
⋂

N∈NG

N.

So the map i is injective if and only if
⋂
N∈NG

N = 1, which is equivalent to G being
Hausdorff with respect to its profinite topology. Hence we want to define . . .

3.2.11 Definition. (Residually finite)
An abstract group G is called residually finite if

⋂
N∈NG

N = 1.

In the following, if we talk about an abstract group G as topological group, we always
think of it equipped with its profinite topology.

3.2.12 Lemma. The natural continuous homomorphism i : G −→ Ĝ maps G onto a
dense subgroup of Ĝ and satisfies the following universal property:
If H is a profinite group and φ : G −→ H is a continuous homomorphism, then there is
a unique continuous homomorphism Φ: Ĝ −→ H such that Φ ◦ i = φ.

Ĝ

G H
φ

i
∃! Φ

Proof. Note that by Lemma 3.1.8 we have that i(G) is a dense subgroup of Ĝ. So let
φ : G −→ H be a continuous homomorphism to a profinite group H. By Theorem 3.2.7
we find a neighborhood basis U of 1 ∈ H consisting of open normal subgroups in H
with finite index such that H = lim←− U∈UH/U . Observe that for every U ∈ U we find

NU := φ−1(U) as normal subgroup of finite index in G and the fundamental theorem of
homomorphisms gives an homomorphism φU : G/NU −→ H/U induced by φ. Denoting
the projections lim←−G/N −→ G/N by ΦN we obtain a compatible family of continuous

homomorphisms ΨU : lim←−G/N −→ H/U defined as the composition

lim←−G/N
ΦNU−→ G/NU

φU−→ H/U.

and they induce a continuous homomorphism

Φ: Ĝ = lim←−G/N −→ lim←−H/U
∼= H.

Explicitly, it is given by Φ((gNN)) = (φ(gNU
)U), so it should be obvious that Φ ◦ i = φ,

if we remember that the isomorphism H
∼−→ lim←−H/U is given by h 7−→ (hU). In order

to see that the extension Φ is unique, let us assume that Φ1 and Φ2 are continuous
homomorphisms Ĝ −→ H with Φj ◦ i = φ for j = 1, 2. Then the equaliser

E := {x ∈ Ĝ | Φ1(x) = Φ2(x)}
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3.2 Profinite groups and profinite completion of groups

is a closed subset of Ĝ since the maps Φj are continuous and H is a Hausdorff space. On

top of that, we have by assumption i(G) ⊆ E. So i(G) being dense in Ĝ implies E = Ĝ
and hence Φ1 = Φ2.

3.2.13 Proposition. Let G be a residually finite group, so that we can identify G with
its image under the natural continuous monomorphism (i.e. injective homomorphism)

i : G −→ Ĝ.

a) There is a bijection

Φ: {U | U ≤o G} −→ {V | V ≤o Ĝ}, U 7−→ U

with inverse

Ψ: {V | V ≤o Ĝ} −→ {U | U ≤o G}, V 7−→ V ∩G.

b) If H,K ∈ {U | U ≤o G} and H ≤ K then [K : H] = [K : H]. Moreover H EK if
and only if H EK and in this case K/H ∼= K/H.

Proof. a) First of all note that Φ is well-defined since by compactness a subgroup U of

Ĝ is open if and only if it is closed and of finite index. So if U is an open subgroup of
G by Proposition 3.2.10 there is some normal subgroup of finite index in G contained
in U which implies that U itself has finite index in G. Hence we find g1, ..., gn ∈ G
for some n ∈ N such that

∐
i=1,...,n giU = G. Since G is dense in Ĝ we can conclude

Ĝ = G =
⋃

i=1,...,n

giU

by taking the closure and see that U has finite index in Ĝ. To see that Ψ is well-
defined observe that V ∩ G = i−1(V ) for any open subgroup V of Ĝ and use that i

is a continuous homomorphism. If V is an open subgroup of Ĝ we know that V is
closed in Ĝ and V ∩G is dense in V since G is dense in Ĝ. So

Φ ◦Ψ(V ) = V ∩G = V.

Conversely if U is an open subgroup of G, we see that

U ⊆ U ∩G = Ψ ◦ Φ(U).

So let x ∈ U ∩G. Recall that the identification of G in Ĝ is given by

g 7−→ (gN) ∈ lim←−N∈NG/N.

Lemma 3.1.9 tells us that U = lim←−N∈N (G)UN/N. Thus x ∈ UN for every N ∈ NG.
Since U is an open subgroup of G, Proposition 3.2.10 guarantees the existence of a
normal subgroup NU of G contained in U and with finite index in G. For example
the core

UG :=
⋂
g∈G

gUg−1 ⊆ U

of U in G does the job. Hence we can conclude x ∈ UUG = U .
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3 Profinite completion

b) Since [K : H] = [G : H]/[G : K] and [K : H] = [Ĝ : H]/[Ĝ : K] we only have to show

that [G : U ] = [Ĝ : U ] for any open subgroup U of G. First of all let us convince

ourselves that GU = Ĝ. Note that

GU =
⋃
g∈G

gU,

where the right hand side is in fact a finite union since U has finite index in Ĝ.
Furthermore gU is closed in Ĝ as homeomorphic image under left-multiplication with
g of U , so we see that GU is closed in Ĝ. Thus G being dense in Ĝ and contained
in GU implies GU = Ĝ. Hence, if n denotes the index of U in Ĝ, we can find
x1, ..., xn ∈ G as system of representatives for the left cosets of U in Ĝ. By a) we see
that for any x ∈ G we have xU ∩G = xU and conclude n = [G : U ] by

G = Ĝ ∩G =
n⊔
i=1

(xiU ∩G) =
n⊔
i=1

xiU.

Now let HEK. Then HN/N EKN/N for every N ∈ NG, since the image of normal
subgroups under surjective homomorphisms are normal and hence

H = lim←−N∈NHN/N E lim←−N∈NKN/N = K.

Conversely, if H EK, a) tells us that

H = H ∩GEK ∩G = K.

To see that K/H ∼= K/H consider the homomorphism φ : K −→ K/H given by the
composition

K
i|

K−→ K
π−→ K/H,

where π denotes the canonical projection. Applying the fundamental theorem of
homomorphisms to φ and using that

ker(φ) = H ∩K = H,

we see that φ factors through K/H by a monomorphism K/H −→ K/H which has
to be surjective since [K : H] = [K : H].

3.2.14 Remark. a) If G is a residually finite group, then we can identify G with its

image under i : G −→ Ĝ as topological groups since Proposition 3.2.13 implies that
i is an embedding of topological spaces.

b) If we assume additionally that G is finitely generated in Proposition 3.2.13, then we
can use the result of Nikolov, Segal, and Nikolav, 2007 in order to replace the set
{V | V ≤o Ĝ} by {V | V ≤f Ĝ}, since they showed that in a finitely generated
profinite group every subgroup of finite index is open.
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Now let us assume that φ : G −→ H is a homomorphism of groups. Note that φ is
continuous, if we equip both groups with their profinite topology. Our next goal is to find

a canonical continuous homomorphism φ̂ : Ĝ −→ Ĥ in such a way that (̂ · ) is functorial.
So for N ∈ NH consider the embeddings ΘN : G/φ−1(N) −→ H/N of topological groups
induced by

G
φ−→ H

πN−→ H/N,

where πN are the canonical projections. In fact, these ΘN are components of a map
Θ: (G/φ−1(N), ϕMN ,NH) −→ (H/N,ψMN ,NH) of projective systems where

ϕMN : G/φ−1(M) −→ G/φ−1(N) , ψMN : H/M −→ H/N

are the canonical projections for M ⊆ N . Using functoriality of lim←− we obtain a contin-
uous homomorphism

lim←−Θ: lim←−G/φ
−1(N) −→ lim←−H/N.

On top of that, since {φ−1(N) | N ∈ NH} is a directed subset of NG, we have a
continuous homomorphism

Λ: lim←−G/M −→ lim←−G/φ
−1(N)

induced by the surjective projections lim←−G/M −→ G/φ−1(N) for N ∈ NH . So we can

define φ̂ as the composition

Ĝ = lim←−G/M
Λ−→ lim←−G/φ

−1(N)
lim←−Θ

−→ lim←−H/N = Ĥ.

Explicitly, this map is given by φ̂((gMM)) = (φ(gφ−1(N))N), which explains the commu-
tativity of the following diagram:

Ĝ Ĥ

G H
φ

φ̂

iG iH

Observe that lim←−Θ is an embedding of topological groups by Remark 3.1.5 and Λ is an

epimorphism (i.e. surjective homomorphism) by Corollary 3.1.7.

3.2.15 Lemma. The profinite completion (̂ · ) is a functor from the category of groups
to the category of profinite groups with continuous homomorphisms.

Proof. Using the explicit description of φ̂ it is easy to verify that

îdG = idĜ and φ̂2 ◦ φ1 = φ̂2 ◦ φ̂1

for homomorphisms φ1 : G −→ H and φ2 : H −→ K.
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3 Profinite completion

3.2.16 Lemma. If φ : G −→ H is a homomorphism of groups and iH : H −→ Ĥ the
canonical continuous homomorphisms to its profinite completion, then

Im(φ̂) = Im(iH ◦ φ).

Proof. Let iG : G −→ Ĝ be the canonical continuous homomorphism for G. In the
discussion above we convinced ourselves that φ̂ ◦ iG = iH ◦ φ, so Im(iH ◦ φ) ⊆ Im(φ̂).

Since Ĝ is compact and Ĥ is Hausdorff we know that Im(φ̂) is closed in Ĥ and therefore

Im(iH ◦ φ) ⊆ Im(φ̂).

Furthermore iG(G) is dense in Ĝ which implies that Im(iH ◦ φ) = φ̂(iG(G)) is dense in

φ̂(Ĝ). Hence

Im(iH ◦ φ) ⊇ Im(φ̂)

and we obtain equality.

3.2.17 Lemma. Let K be a subgroup of G and ι : K ↪→ G the inclusion. Then the
induced map ι̂ : K̂ −→ Ĝ is injective if and only if the profinite topology of G induces on
K its profinite topology.

Proof. We defined ι̂ as the composition

K̂
Λ−→ lim←−K/(K ∩N)

lim←−Θ

−→ Ĝ

and observed that Λ is an epimorphism and lim←−Θ is an embedding. Hence ι̂ is injective

if and only if the epimorphism Λ: lim←−K/M −→ lim←−K/(K ∩ N) is injective. So let us
assume that the profinite topology on G induces the profinite topology on K. Then
{K ∩ N | N ∈ NG} is a neighborhood basis of 1 ∈ K and hence it is cofinal in
NK . Lemma 3.1.11 tells us now that Λ is an isomorphism of topological groups and
hence injective. Conversely if we assume that Λ is injective, then it is an isomorphism
of topological groups as continuous bijection between compact Hausdorff spaces. If we
denote by ΦK∩N : lim←−K/(K∩N) −→ K/(K∩N) the corresponding projections, Lemma
3.2.2 gives us

{ker(ΦK∩N) | N ∈ NG}
as neighborhood basis of 1 ∈ lim←−K/(K ∩ N). Using that Λ is an isomorphism of
topological groups and the fact that the profinite topology on K is the coarsest topology,
such that the canonical homomorphism i : K −→ K̂ is continuous, we find

{(Λ ◦ i)−1(ker(ΦK∩N)) | N ∈ NG}

as neighborhood basis of 1 ∈ K. But this means that the profinite topology on G induces
on K its profinite topology, since

(Λ ◦ i)−1(ker(ΦK∩N)) = ker(ΦK∩N ◦ Λ ◦ i) = K ∩N

for every N ∈ NG.
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3.2 Profinite groups and profinite completion of groups

3.2.18 Corollary. If K is a subgroup of the residually finite group G and ι : K ↪→ G
denotes the inclusion, then ι̂ : K̂ −→ K is an isomorphism of topological groups if and
only if the profinite topology on G induces on K its profinite topology.

Proof. By Lemma 3.2.16 we have Im(ι̂) = Im(i ◦ ι) = K, where we identify G with its

image in Ĝ under the natural embedding i : G ↪→ Ĝ. By Lemma 3.2.17 we know that ι̂
is injective if and only if the profinite topology on G induces the profinite topology on
K. So the claim follows from the fact that ι̂ : K̂ −→ K is an isomorphism of topological
groups if and only if it is bijective, since ι̂ is continuous and K̂,K are compact Hausdorff
spaces.

3.2.19 Lemma. Let H be a subgroup of G, which is open in the profinite topology of G.
Then the profinite topology on G induces on H its profinite topology.

Proof. Since H is open in the profinite topology on G by assumption, we know that H
is of finite index in G. Now we want to show that for any normal subgroup N EH with
finite index we can find a normal subgroup M EG with finite index, such that M ≤ N .
So let M := NG be the core of N in G. Since N has finite index in H and H has finite
index in G, we see that N has finite index in G as well and by Lemma 3.2.4 we can
conclude that M satisfies everything we wanted.
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4 L2-Betti numbers and profinite invariance

In Chapter 2 we introduced the L2-Betti numbers of a group G and in Chapter 3 we
defined its profinite completion. So for the p-th L2-Betti number to be a profinite
invariant, we require that b

(2)
p (G) = b

(2)
p (H) for any two groups G and H which have

isomorphic profinite completions Ĝ ∼= Ĥ. Chapter 4.1 will show that this is actually true
for the first L2-Betti number if we consider finitely presented residually finite groups, but
in Chapter 4.2 we construct explicit counterexamples for every even dimension greater
or equal to 6.

4.1 The first L2-Betti number is a profinite invariant

In this section, which is based on Reid, 2013, we want to show that the first L2-Betti
number is a profinite invariant for finitely presented residually finite groups (cf. Theo-
rem 1.0.1).

The following observation will be key for this section.

4.1.1 Proposition. Let G be a finitely generated group and F a finite discrete group.
Then every group homomorphism Φ: Ĝ −→ F is continuous, which means that

HomTGrp(Ĝ, F ) = HomGrp(Ĝ, F ).

Proof. It suffices to show that Φ−1(1F ) = ker(Φ) is open in Ĝ. But ker(Φ) is of fi-

nite index in Ĝ and hence open by Remark 3.2.14 b), since G is finitely generated by
assumption.

4.1.2 Lemma. Let G be a finitely generated group, i : G −→ Ĝ the natural map to its
profinite completion and F any finite group. Then the map

i∗ : HomGrp(Ĝ, F ) −→ HomGrp(G,F ), Φ 7−→ Φ ◦ i

is a bijection and the restriction to Epi(Ĝ, F ) yields a bijection

Epi(Ĝ, F )
∼−→ Epi(G,F ).

Proof. Note that F endowed with its discrete topology is profinite, so we know that

i∗ : HomTGrp(Ĝ, F )
∼−→ HomTGrp(G,F )

is a bijection by Lemma 3.2.12. Furthermore, HomTGrp(G,F ) = HomGrp(G,F ) since
every homomorphism is continuous if the groups carry their profinite topology and
HomTGrp(Ĝ, F ) = HomGrp(Ĝ, F ) by Proposition 4.1.1. Of course the restriction of i∗ to

Epi(Ĝ, F ) is still injective and its image is contained in Epi(G,F ). To see this, let us

assume that Φ: Ĝ −→ F is surjective. Note that Φ is continuous by Proposition 4.1.1,
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4 L2-Betti numbers and profinite invariance

if F carries its discrete topology. Since i(G) is dense in Ĝ we see that Φ(i(G)) is dense

in Φ(Ĝ) = F . Hence we can conclude

Im(Φ ◦ i) = Im(Φ ◦ i) = F,

since F is discrete. Furthermore the image of i∗|Epi(Ĝ,F )
has to be all of Epi(G,F ) since

Φ needs to be surjective if Φ ◦ i wants to have a chance to be surjective.

4.1.3 Corollary. Let G1 and G2 be finitely generated groups with Ĝ1
∼= Ĝ2. Then for

any finite group F we have

|HomGrp(G1, F )| = |HomGrp(G2, F )|.

4.1.4 Lemma. Let G be a finitely generated group. Then

b1(G) = dimQ[(G/[G,G])⊗Z Q],

so the first Betti number of G is the greatest integer b ∈ N0 such that G surjects onto
(Z/pkZ)b for every k ∈ N and every p ∈ P.

Proof. Note that the quotient map EG −→ BG = G\EG is a covering map and EG
is (weakly) contractible. So EG is the universal cover of BG and π1(BG) = G. Hence
Hurewicz gives us

H1(BG;Z) = π1(BG)ab = Gab = G/[G,G]

since BG is path-connected and we conclude

b1(G) = dimQ(H1(BG;Q)) = dimQ[(G/[G,G])⊗Z Q]

by using the universal coefficient theorem for homology.

4.1.5 Corollary. Let G and H be finitely generated groups. If H is isomorphic to a
dense subgroup of Ĝ, then b1(H) ≥ b1(G).

Proof. Recall that for a finitely generated group X we can characterise b1(X) as the
greatest integer b such that X surjects onto (Z/pkZ)b for every k ∈ N and every p ∈ P
by Lemma 4.1.4. Let us denote by i : G −→ Ĝ the natural continuous homomorphism
of G to its profinite completion and by j : H ↪→ Ĝ the embedding of H into Ĝ. The
same argumentation as in the proof of Lemma 4.1.2 shows that for any epimorphism
Φ: Ĝ −→ F onto a finite group F, the restriction Φ ◦ j is an epimorphism as well. So
the map

j∗ : Epi(Ĝ, F ) −→ Epi(H,F ), Φ 7−→ Φ ◦ j
is well defined. Hence any epimorphism f ∈ Epi(G, (Z/pkZ)b) yields an epimorphism
j∗ ◦ (i∗)−1(f) ∈ Epi(H, (Z/pkZ)b), where we use Lemma 4.1.2 in order to invert

i∗ : Epi(Ĝ, F ) −→ Epi(G,F ), Φ 7−→ Φ ◦ i.

.
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4.1 The first L2-Betti number is a profinite invariant

4.1.6 Definition. We introduce the following notation for a group G and d ∈ N:

• N d
G := {N EG | [G : N ] ≤ d}

• Md
G :=

⋂
N∈N d

G

N

4.1.7 Corollary. Let G be a finitely generated residually finite group. Then

Md
Ĝ

= Md
G.

Proof. For normal subgroups N1 and N2 of finite index in G we can find epimorphisms
φi : G −→ Fi onto finite groups Fi such that ker(φi) = Ni (i = 1, 2). By Lemma 4.1.2

there are extensions Φi : Ĝ −→ Fi. Note that ker(Φi) is of finite index in Ĝ and hence
open by Remark 3.2.14 b). So Proposition 3.2.13 tells us that ker(Φi) = Ni since

ker(Φi) ∩G = ker(φi) = Ni.

Furthermore we can consider the product φ1 × φ2 : G −→ F1 × F2 and extend it to a
map Φ: Ĝ −→ F1 × F2. Then Lemma 4.1.2 implies that Φ = Φ1 × Φ2 since extensions
are unique by Lemma 4.1.2 and hence

N1 ∩N2 = ker(Φ) = ker(Φ1 × Φ2) = N1 ∩N2.

So by induction we can show that ⋂
i=1,...,n

Ni =
⋂

i=1,...,n

Ni

for n ∈ N and normal subgroups N1, ..., Nn of finite index in G. The fact that there are
only finitely many subgroups of given index d ∈ N in a finitely generated group gives us

Md
G =

⋂
N∈N d

G

N =
⋂

N∈N d
G

N
3.2.13
=

⋂
M∈N d

Ĝ

M = Md
Ĝ
.

4.1.8 Definition. (H-separable)
A group G is called H-separable for a subgroup H ≤ G, if for every g ∈ G \H there is
some subgroup K of finite index in G such that H ⊆ K but g /∈ K. Obviously this is
equivalent to ⋂

H⊆K≤fG

K = H.

4.1.9 Lemma. Let G be a residually finite group and H a finitely generated subgroup
of G. If G is U-separable for every finite index subgroup U of H, then the natural
homomorphism ι̂ : Ĥ −→ H induced by the inclusion ι : H ↪→ G is an isomorphism of
topological groups.
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4 L2-Betti numbers and profinite invariance

Proof. By Corollary 3.2.18 we have to show that the profinite topology on G induces
the profinite topology on H. Let U be a subgroup of finite index in H. By assumption
G is U -separable, so we have ⋂

U⊆K≤fG

K = U

and intersecting both sides with H yields⋂
U⊆K≤fG

(K ∩H) = U ∩H = U. (3)

Since U is of finite index in the finitely generated group H, there are only finitely many
subgroups of H which contain U . Hence we find finitely many subgroups K1, ..., Kn of
finite index in G such that⋂

i=1,...,n

(Ki ∩H) =
⋂

U⊆K≤fG

(K ∩H)
(3)
= U.

So the finite index subgroup V :=
⋂
i=1,...,nKi of G satisfies V ∩ H = U . This shows

that the profinite topology on H is induced by the profinite topology on G.

4.1.10 Corollary. Let G be a finitely generated residually finite group and H a subgroup
of finite index in G. Then the natural homomorphism ι̂ : Ĥ −→ H induced by the
inclusion ι : H ↪→ G is an isomorphism of topological groups.

Proof. First of all note that H is finitely generated as finite index subgroup of a finitely
generated group and every finite index subgroup U of H is of finite index in G as well.
Hence G is obviously U -separable for every finite index subgroup U of H and we can
use Lemma 4.1.9 to see that ι̂ is an isomorphism of topological groups.

4.1.11 Proposition. Let G and H be finitely presented residually finite groups and H
a dense subgroup of Ĝ. Then b

(2)
1 (G) ≤ b

(2)
1 (H).

Proof. First of all note that ⋂
d∈N

Md
G

4.1.7
=
⋂
d∈N

Md
Ĝ

3.2.7
= 1.

So for Ld := H ∩Md
G ⊆ Ĝ we find⋂

d∈N

Ld =
⋂
d∈N

H ∩Md
G = H ∩

⋂
d∈N

Md
G = 1.

Since G and H are dense in Ĝ, the same argumentation as in the proof of Lemma 4.1.2
shows that the restriction of the natural projection pd : Ĝ −→ Ĝ/Md

G to G resp. H are
still surjective for every d ∈ N. Furthermore

ker(pd|H) = H ∩Md
G = Ld
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4.1 The first L2-Betti number is a profinite invariant

and
ker(pd|G) = G ∩Md

G
3.2.13
= Md

G.

Note that Md
G is open in G since it is of finite index as finite intersection of finite index

subgroups. So we obtain

[H : Ld] = [Ĝ : Md
G] = [G : Md

G].

Since H is dense in Ĝ and Md
G is open in Ĝ, we can conclude that that Ld is dense in

Md
G

4.1.10∼= M̂d
G. Now Corollary 4.1.5 implies that b1(Ld) ≥ b1(Md

G), where we use that
both Ld and Md

G are finitely generated as finite index subgroups of finitely generated
groups H and G. Finally we can use Lück’s Approximation Theorem (cf. Theorem
2.3.7) to compare the L2-Betti numbers of G and H by

b
(2)
1 (G) = lim

d→∞

b1(Md
G)

[G : Md
G]
≤ lim

d→∞

b1(Ld)

[H : Ld]
= b

(2)
1 (H).

Now the main theorem of this section (cf. Theorem 1.0.1) is a direct consequence of
the previous Proposition.
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4 L2-Betti numbers and profinite invariance

4.2 The L2-Betti numbers in general are no profinite invariant

The goal of this section is to show Theorem 4.2.35, which states that there are finitely
presented residually finited groups with isomorphic profinite completions and different
L2-Betti numbers. The construction of these groups and hence most of this section is
based on Aka, 2010.
Later we will need the existence of a square root of −7 in Z2, whose existence is guar-
anteed by Hensel’s Lemma. For that purpose we start by introducing the basic notions
for this tool.

4.2.1 Definition. (Number field and ring of integers)

a) A number field K ⊆ C is a finite extension of the field Q.

b) If K is a number field we denote by OK its ring of integers, which consists of all
elements k ∈ K such that there is a monic polynomial p ∈ Z[X] with p(k) = 0.

4.2.2 Definition. (Absolute value and valuation)
Let K be a field.

a) An absolute value on K is a map | · | : K −→ R≥0 which satisfies the following
conditions for alle k, l ∈ K:

1) |k| = 0 ⇐⇒ k = 0,

2) |kl| = |k||l|,
3) |k + l| ≤ |k|+ |l|.
It is called non-archimedean if we can replace condition 3) by the stronger condition
3′) |k + l| ≤ max{|k|, |l|}.
Otherwise we call it archimedean.

b) A valuation on K is a map v : K −→ R∪{∞} which satisfies the following conditions
for all k, l ∈ K:

1) v(k) =∞ ⇐⇒ k = 0,

2) v(kl) = v(k) + v(l),

3) v(k + l) ≥ min{v(k), v(l)}.
It is called discrete if there is some natural number s ∈ R≥0 with v(K×) = sZ.

4.2.3 Remark. If | · | : K −→ R≥0 is a non-archimedean absolute value, then we find a
valuation by

v : K −→ R ∪ {∞}, k 7→

{
− log |k| if x 6= 0,

∞ if x = 0.

Also every valuation v : K −→ R∪{∞} defines a corresponding non-archimedean abso-
lute value by

| · | : K −→ R≥0, k 7→

{
q−v(k) if x 6= 0,

0 if x = 0,
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4.2 The L2-Betti numbers in general are no profinite invariant

where q ∈ R is some real number with q > 1.

Obviously every absolute value on K yields a metric if we define the distance between
x, y ∈ K by

d(x, y) := |x− y|.
Hence we are able to define Cauchy sequences in K and convergence of sequences in K
in the usual way if K is equipped with an absolute value or a valuation.

4.2.4 Definition. (Completeness)
A field K is said to be complete with respect to an absolute value | · | on K, if every
Cauchy sequence {an}n∈N in K converges to an element a ∈ K, i.e.

lim
n→∞

|an − a| = 0.

If the field K is not complete with respect to an absolute value | · | on K, at least

there is a complete field K̂ which contains K and the absolute value on K̂ is obtained
by extending the absolute value on K. For more details we refer to section 4 of Chapter
2 in Neukirch, 1990.

4.2.5 Definition. (Valuation ring and residue field)
Let v : K −→ R ∪ {∞} be a valuation. We call

O := {x ∈ K | v(x) ≥ 0}

the valuation ring of v. The units in O are given by

O× := {x ∈ K | v(x) = 0}

and O contains only one maximal ideal, namely

℘ := {x ∈ K | v(x) > 0}.

The field O/℘ is called residue field of v.

4.2.6 Definition. (Primitive)
Let K be field which is complete with respect to a non-archimedean absolute value
| · | : K −→ R≥0, O the corresponding valuation ring with its maximal ideal ℘ and
residue field κ := O/℘. A polynomial f = a0 + a1X + . . . + anX

n ∈ O[X] is called
primitive if f 6≡ 0 mod ℘.

Now we are able to formulate Hensel’s Lemma. The statement together with a proof
of it can be found in Theorem 4.8 of Chapter 2 in ibid.

4.2.7 Theorem. (Hensel’s lemma)
Under the same conditions as in Definition 4.2.6 let f ∈ O[X] be a primitive polynomial.
If there is some decomposition

f ≡ g · h mod ℘
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4 L2-Betti numbers and profinite invariance

into coprime polynomials g, h ∈ κ[X], then there is a decomposition

f = g · h

into polynomials g, h ∈ O[X] with deg(g) = deg(g) and

g ≡ g mod ℘ and h ≡ h mod ℘.

4.2.8 Corollary. Let p ∈ P be a prime number, f ∈ Zp[X] a polynomial and f ∈ Fp[X]

its reduced polynomial. If f has a simple root a ∈ Fp (i.e. f(a) = 0 and f
′
(a) 6= 0), then

there is a root a ∈ Zp of f and a ≡ a mod p.

Proof. We obtain this statement as a direct consequence of Hensel’s Lemma. First of all
note that f is primitive by assumption, otherwise no root of f̄ could be simple. Since a
is a simple root of f we have a decomposition

f = (X − a) · h

of f for some h ∈ Fp[X] with h(a) 6= 0. So h and g := (X − a) ∈ Fp[X] are coprime and
Theorem 4.2.7 tells us that there is a decompositon

f = g · h

into polynomials g, h ∈ Zp[X] with deg(g) = deg(g) = 1 and g ≡ g mod p. Hence we
can write

g = a1X + a0 ∈ Zp[X]

with a1 ≡ 1 mod p (i.e. a1 ∈ Zp\pZp = Z×p ) and a0 ≡ −a mod p. So for a := −a0

a1
∈ Zp

we find
f(a) = g(a) · h(a) = 0 · h(a) = 0

and

a ≡ −a0

a1

≡ −−a
1
≡ a mod p.

4.2.9 Lemma. There is
√
−7 in Z2.

Proof. First observe that we can’t apply Corollary 4.2.8 to q := X2 + 7 ∈ Z2[X] since

q = X2 + 7 = X2 + 1 = (X − 1)(X + 1) = (X − 1)2 ∈ F2[X]

and hence its reduction has no simple root in F2. But −7 ≡ 1 mod 2, so −7 is a unit
in Z2 and if there is a solution a ∈ Z2 of X2 = −7, then a has to be a unit as well.
Hence a ≡ 1 mod 2 and we can find b ∈ Zp with a = 2b + 1. So we can use the linear
transformation X 7→ 2X + 1 and try to find a root of

r := q(2X + 1) = (2X + 1)2 + 7 = 4X2 + 4X + 8 ∈ Z2[X].
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4.2 The L2-Betti numbers in general are no profinite invariant

Equivalently we can try to find roots of

p :=
r

4
= X2 +X + 2 ∈ Z2[X],

since 4 is not a zero divisor in Z2. The reduction of p is given by

p = X2 +X = X(X + 1) ∈ F2[X].

So 0 and 1 are simple roots and both of them can be lifted by Corollary 4.2.8 to roots
b1, b2 ∈ Z2.

4.2.10 Lemma. Let K be a field. If G is a finite subgroup of the multiplicative group
K×, then G is cyclic.

Proof. By assumption G is a finite abelian group and hence in particular a finitely
generated abelian group. So the fundamental theorem of finitely generated abelian
groups tells us that

G ∼=
d⊕
i=1

Z/eiZ

for some d ∈ N and natural numbers e1, e2, . . . , ed > 2, such that ei divides ei+1 for every
i ∈ {1, . . . , d− 1}. If we assume that G is not cyclic, then d ≥ 2 and

{(x, y, 0, . . . , 0) ∈
d⊕
i=1

Z/eiZ | x ∈ Z/e1Z, y ∈ Z/e2Z}

corresponds to e1 · e2 elements in G, which are roots of p = Xe2 − 1 ∈ K[X]. But this
contradicts the fact that p can only have e2 roots in K, which is less than e1 · e2.

4.2.11 Corollary. Every element in a finite field Fq is the sum of two squares, i.e. for
a ∈ Fq there are b, c ∈ Fq such that a = b2 + c2.

Proof. First we want to treat the case q = 2n for some n ∈ N. Note that |F×2n| = 2n− 1.
Hence for a ∈ F×2n we find

1 = a2n−1 =⇒ a = a2n = (a2n−1

)2

by Lagrange’s theorem and actually a itself is a square. Another way to treat this case
is using surjectivity of the Frobenius automorphism

φ : F2n −→ F2n , x 7−→ x2.

Now we can assume that q = pn for some odd prime p ∈ P\{2} and n ∈ N. We consider
the two sets

A := {x2 | x ∈ Fq} and B := {a− y2 | y ∈ Fq}
for some fixed a ∈ Fq. Our goal is to show that |A| = |B| ≥ q+1

2
, so we can conclude

that A and B are not disjoint and hence the claim follows. The fact that |A| = |B| is
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4 L2-Betti numbers and profinite invariance

obvious, so we have to see that |A| ≥ q+1
2

. Note that the group F×q is cyclic of order q−1
by Lemma 4.2.10. So there is a generator g of F×q and can write F×q = {g, g2, . . . , gq−1}.
Since q is odd, we have

{0} t {g2n | n ∈ {1, . . . , q − 1

2
}} ⊆ A

and hence at least q+1
2

elements in A.

4.2.12 Lemma. The equation

x2
1 + x2

2 + x2
3 + x2

4 = −1

has a solution (xp, yp, zp, wp) ∈ Z4
p for any prime p ∈ P.

Proof. By Lemma 4.2.9 we find
√
−7 in Z2, so (2, 1, 1,

√
−7) ∈ Z4

p does the job for p = 2.
Hence we can assume that p 6= 2. Since we know that every element in Fp is a sum of
two squares by Corollary 4.2.11, we can find elements a, b ∈ Fp with

a2 + b
2

= −1.

Without loss of generality we can assume that a 6= 0. Hence the polynomial

p := X2 + b
2

+ 1 ∈ Fp[X]

has a as simple root which can be lifted by Corollary 4.2.8 to a root ã ∈ Zp of the
polynomial

p := X2 + b2 + 1 ∈ Zp[X].

So in this case (ã, b, 0, 0) ∈ Z4
p does the job.

Now we want to introduce the group which is central for the rest of this section,
namely the spin group Spin(V,Q) of a quadratic space (V,Q). For that purpose, we
need some basic notions and properties about quadratic spaces and their corresponding
Clifford algebra. For a more detailed reading we refer to Chapter 2 and Chapter 10 of
Cassels, 2008.

4.2.13 Definition. (Quadratic form and quadratic space)
Let K be a field with char(K) 6= 2, I ⊆ K a subring and n ∈ N.

a) A quadratic form overK in n variables is a homogeneous polynomial q ∈ K[X1, . . . , Xn]
of degree 2. Hence it can written as

q(X) := q(X1, . . . , Xn) =
n∑

i,j=1

qijXiXj

with qij = qji ∈ K for 1 ≤ i, j ≤ n. So q can be seen as a map Kn −→ K which
maps (k1, . . . , kn) to q(k1, . . . , kn). Furthermore it corresponds to a symmetric matrix
Aq := (qij)1≤i,j≤n ∈ Kn×n which satisfies

q(x) = xTAqx ∀x ∈ Kn.
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b) Two quadratic forms p, q ∈ K[X1, . . . , Xn] are said to be equivalent over I if there is
C ∈ GLn(I) such that

q(Cx) = p(x) ∀x ∈ Kn.

This is equivalent to
CTAqC = Ap,

if Ap, Aq ∈ Kn×n denote their corresponding matrices.

c) A quadratic space (V,Q) over K is a finite dimensional K-vector space V with a
symmetric bilinear form Q : V × V −→ K. By abuse of notation we put

Q(v) := Q(v, v)

for every v ∈ V and note that

Q(u, v) =
1

4
(Q(u+ v)−Q(u− v)).

The dimension of the quadratic space (V,Q) is the dimension of the underlying vector
space V .

d) Two quadratic spaces (V1, Q1) and (V2, Q2) over K are called isometric if there is an
isometry σ : V1 −→ V2, which means that σ is an isomorphism of K-vector spaces
and satisfies

Q2(σ(v)) = Q1(v) ∀v ∈ V1.

e) The quadratic space (V,Q) over K is said to be regular, if the K-linear map

Φ: V −→ HomK(V,K), v 7−→ [Φ(v) : w 7→ Q(v, w)]

is an isomorphism.

4.2.14 Remark. a) Let K be a field with char(K) 6= 2 and (V,Q) be a quadratic
space over K with basis B := {v1, . . . , vn} of V . Then we find a quadratic form
q ∈ K[X1, . . . , Xn] corresponding to (V,Q) by

q(X1, . . . , Xn) :=
n∑

i,j=1

Q(vi, vj)XiXj

which satisfies

q(k1, . . . , kn) = Q(
n∑
i=1

kivi).

Choosing another basis C := {u1, . . . , un} of V we obtain another quadratic form

q̃(X1, . . . , X2) :=
n∑

i,j=1

Q(ui, uj)XiXj,
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but obviously q and q̃ are equivalent over K using the base change matrix DCB. Fur-
thermore every quadratic form q =

∑
i=1,...,n qijXiXj ∈ K[X1, . . . , Xn] with qij = qji

arises from a quadratic space (V,Q) over K. To see this, let V be any n-dimensional
K-vector space with basis {v1, . . . , vn} and define a symmetric bilinear form Q on V
by Q(vi, vj) = qij.

b) Let (V1, Q1) and (V2, Q2) be n-dimensional quadratic spaces over K. If there is
an isometry σ : V1 −→ V2, then obviously their corresponding quadratic forms q1

with respect to a basis B of V1 and q2 with respect to σ(B) are equivalent over K.
Conversely, if their corresponding equivalence classes of quadratic forms over K are
the same, then it is easy to find an isometry σ : V1 −→ V2. Therefore two quadratic
spaces over K are isometric if and only if they correspond to the same equivalence
class of quadratic forms over K.

c) If U ≤ V is a subspace, then (U,Q|U×U) is is quadratic space and we denote it by

(U,Q).

4.2.15 Definition. (Orthogonal complement and normal basis)
Let (V,Q) be an n-dimensional quadratic space over K.

a) For a subspace U ≤ V we define the orthogonal complement of U as

U⊥ := {v ∈ V | Q(u, v) = 0 ∀u ∈ U}.

Note that U⊥ is a subspace of V .

b) A basis {v1, . . . , vn} of V is said to be normal if Q(vi, vj) = 0 for all i, j ∈ {1, . . . , n}
with i 6= j.

4.2.16 Lemma. Let (V,Q) be a quadratic space over K. If U ≤ V is a subspace such
that (U,Q) is regular, then V = U ⊕ U⊥.

Proof. Every v ∈ V determines a K-linear map

λv : U −→ K, u 7→ Q(v, u).

By regularity of (U,Q) we find some w ∈ U with Φ(w) = [u 7→ Q(w, u)] = λv which
means that

Q(w, u) = Q(v, u)⇐⇒ Q(v − w, u) = 0

for every u ∈ U . Hence v−w ∈ U⊥ and v = w+(v−w). Furthermore U∩U⊥ = {0} since
for every 0 6= u ∈ U we find some v ∈ U with Q(u, v) 6= 0 by regularity of (U,Q).

4.2.17 Lemma. Every quadratic space has a normal basis.

Proof. We proceed by induction on the dimension of the quadratic space. Let (V,Q) be
a n-dimensional quadratic space over K. If n = 0 the empty basis does the job, so we
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can assume n > 0. If Q = 0 every basis is normal, so we can further assume that there
are v1, v2 ∈ V with Q(v1, v2) 6= 0. Hence

Q(v1 + v2) = Q(v1) + 2Q(v1, v2) +Q(v2)

and we can conclude that there is some v ∈ V with Q(v) 6= 0. Now observe that (〈v〉, Q)
is a regular quadratic space since the map Φ: 〈v〉 −→ HomK(〈v〉, K) in Definition 4.2.13
e) is obviously an isomorphism. So by Lemma 4.2.16 we have V = 〈v〉 ⊕ 〈v〉⊥ and
dimK(〈v〉⊥) = n − 1. Hence 〈v〉⊥ admits a normal basis {v1, . . . , vn−1} by induction
hypothesis and {v1, . . . , vn−1, v} is a normal basis of (V,Q).

4.2.18 Definition. (Direct sum)
Let (V,QV ) and (W,QW ) be quadratic spaces over the same field K. The direct sum
(V,QV ) ⊕ (W,QW ) is a quadratic space with underlying vector space V ⊕W and the
symmetric bilinear form is given by

QV⊕W ((v1, w1), (v2, w2)) := QV (v1, v2) +QW (w1, w2).

4.2.19 Remark. Under the same conditions as in Definition 4.2.18 let AV , AW and
AV⊕W denote the corresponding matrices to the quadratic spaces. It is obvious that

AV⊕W =

(
AV 0
0 AW

)
.

4.2.20 Definition. In the following we want to fix the quadratic forms

• q1 := X2
1 +X2

2 +X2
3 +X2

4 ,

• q2 := −q1 = −X2
1 −X2

2 −X2
3 −X2

4 ,

• qm,n :=
∑m

i=1 X
2
i −

∑m+n
i=m+1 X

2
i (m,n ∈ N0)

and corresponding quadratic spaces (V1, Q1), (V2, Q2), (Vm,n, Qm,n) over a given field K.

4.2.21 Lemma. The quadratic forms q1 and q2 are equivalent over Zp for any prime
p ∈ P.

Proof. Let us fix some prime p ∈ P and a solution (xp, yp, zp, wp) ∈ Z4
p of the equation

x2
1 + x2

2 + x2
3 + x2

4 = −1, which exists by Lemma 4.2.12. Then the matrix

Cp :=


xp yp zp wp
−yp xp −wp zp
−zp wp xp −yp
−wp −zp yp xp

 ∈ Z4×4
p ,

satisfies
CT
p · I4 · Cp = CT

p · Cp = −I4.

Hence Cp ∈ GL4(Zp) and q1 and q2 are equivalent, since I4 and −I4 are the corresponding
matrices to the quadratic forms q1 and q2.
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4.2.22 Corollary. Let m,n ∈ N0 and m ≥ 4. Then the quadratic forms qm,n and
qm−4,n+4 are equivalent over Zp for every prime p ∈ P. Hence, if K is any number field
and v a discrete valuation on K with valuation ring Ov in the completion Kv of K with
respect to v, then qm,n and qm−4,n+4 are equivalent over Ov.

Proof. Let (Vi, Qi) be a quadratic space associated with qi over Kv (i = 1, 2) and
(Vm,n, Qm,n) a quadratic space associated to qm,n over Kv. For the corresponding matri-
ces Ai of (Vi, Qi) and Am,n of (Vm,n, Qm,n) we find A1 = I4, A2 = −I4 and

Am,n =

(
Im 0
0 −In

)
.

By assumption we have m ≥ 4 and using Remark 4.2.19 we see that

(Vm,n, Qm,n) ∼= (V1, Q1)⊕ (Vm−4,n, Qm−4,n) and

(Vm−4,n+4, Qm−4,n+4) ∼= (V2, Q2)⊕ (Vm−4,n, Qm−4,n),

where ”∼=” means isometric as quadratic spaces. Furthermore (V1, Q1) ∼= (V2, Q2) over
Zp since their corresponding quadratic forms are equivalent over Zp by Lemma 4.2.21.
Hence we can conclude that (Vm,n, Qm,n) ∼= (Vm−4,n+4, Qm−4,n+4) over Zp.

4.2.23 Definition. (Clifford algebra)

a) Let (V,Q) be a quadratic space of dimension n ∈ N over a field K. We consider the
category C(V,Q) of associative unital K-algebras A in which V is embedded by a
K-linear map j : V −→ A, such that for every v ∈ V we have

j(v) · j(v) = Q(v) · 1A.

So the objects of our category are such pairs (A, j) and morphisms between (A1, j1)
and (A2, j2) are given by K-algebra homomorphisms φ : A1 −→ A2 such that the
embeddings of V are identified, which means that

φ ◦ j1 = j2.

b) Any initial object (C, c) of C(V,Q) is called Clifford algebra of (V,Q) and we identify
V with its image under c. Furthermore since every initial object is unique up to
unique isomorphisms, we will denote it by Cl(V,Q).

4.2.24 Lemma. Let (V,Q) be a quadratic space of dimension n ∈ N over a field K and
{vi}ni=1 a normal basis of V with respect to Q. Then there is a Clifford algebra (C, c) of
(V,Q) and if ei := c(vi) for every i = 1, . . . , n we find

B := {eI := ei1 · ei2 · . . . · eik | I = {i1 < i2 < . . . < ik} ⊆ {1, 2, . . . , n}}

as K-basis of C. Hence it is of dimension 2n as vector space over K.
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Proof. Let

T (V ) :=
⊕
n≥0

V ⊗n

be the tensor algebra of V and (A, j) an arbitrary object in the category C(V,Q). The
universal property of T (V ) gives us a unique K-algebra homomorphism φ : T (V ) −→ A
induced by the K-linear map j : V −→ A, which satisfies φ ◦ i = j for the canonical
K-linear embedding i : V −→ T (V ). Now observe that the kernel of φ contains the
two-sided ideal

I(V,Q) := 〈{v ⊗ v −Q(v) | v ∈ V }〉,

so it factorises over the canonical projection p : T (V ) −→ T (V )/I(V,Q) =: C and
induces a K-algebra homomorphism φ : C −→ A with φ ◦ p = φ. Note that the K-linear
map

c : V
i−→ T (V )

p−→ C

is still injective and satisfies

c(v) · c(v) = (v ⊗ v) + I(V,Q) = Q(v) + I(V,Q),

so (C, c) is an object in C(V,Q). Furthermore φ is a morphism in C(V,Q), since

φ ◦ c = φ ◦ p ◦ i = φ ◦ i = j.

To see that φ is unique, note that the requirement ψ ◦ c = j gives ψ(v+ I(V,Q)) = j(v)
for every v ∈ V and since {v + I(V,Q) | v ∈ V } generates C as K-algebra, we can
conclude that ψ = φ. Now let us choose a normal basis {v1, . . . , vn} of V with respect
to Q. So we can define

• ei := c(vi) = vi + I(V,Q) ∈ C for i = 1, . . . , n,

• eI := ei1 · . . . · eik for I = {i1 < i2 < . . . ik} ⊆ {1, 2, . . . , n} with e∅ = 1.

By construction of C we find for i, j = 1, . . . , n the relations

ei · ei = Q(vi) (4)

ei · ej + ej · ei = 0 (i 6= j) (5)

since
eiej + ejei = (ei + ej)

2 − e2
i − e2

j = Q(vi + vj)−Q(vi)−Q(vj) = 0.

We already convinced ourselves, that C is generated by {ei}ni=1 as K-algebra. Hence,
every element in C can be expressed as finite sum of finite products of those ei’s . Now we
can use the relations (4) and (5) to see that C is generated by B = {eI | I ⊆ {1, . . . , n}}
as K-vector space, since relation (5) allows us to arrange the generators in a product
in increasing order and relation (4) allows us to reduce their power to 1. It remains to
show B is linearly independent over K. A proof of this can be found in Chapter 19 of
Lang, 2004 (see Theorem 4.1).
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4.2.25 Remark. Let (V,Q) be a quadratic space over a field K. Then the anti-
automorphism

α : T (V ) −→ T (V ), v1 ⊗ v2 ⊗ · · · ⊗ vn 7−→ vn ⊗ · · · ⊗ v2 ⊗ v1

of the tensor algebra T (V ) keeps the two-sided ideal I(V,Q) = 〈{v⊗ v−Q(V ) | v ∈ V }
invariant, so it descends to an anti-automorphism ′ : Cl(V,Q) −→ Cl(V,Q) which makes
the following diagram commute, where p : T (V ) −→ Cl(V,Q) is the canonical projection
factoring out I(V,Q) as in the proof of Lemma 4.2.24.

T (V ) T (V )

Cl(V,Q) Cl(V,Q)

α

p

′

p

4.2.26 Definition. (Even Clifford algebra and spin group)
Let (V,Q) be a quadratic space of dimension n ∈ N over a field K.

a) If {eI | I ⊆ {1, . . . , n}} is the basis of Cl(V,Q) corresponding to a normal basis
{e1, . . . , en} of (V,Q), then the even Clifford algebra of (V,Q) is the subalgebra of
Cl(V,Q) generated by

{eI | I ⊆ {1, . . . , n}, |I| even}

and we denote it by Cl0(V,Q).

b) The spin group of (V,Q) is the subgroup

Spin(V,Q) := {x ∈ Cl0(V,Q)× | xx′ = 1, xV x′ ⊆ V }

in the group of invertible elements of the even Clifford algebra Cl0(V,Q).

c) Let m,n ∈ N0. For a given field K and corresponding quadratic space (Vm,n, Qm,n)
we want to introduce the notation

Cm,n := Cl(Vm,n, Qm,n), C0
m,n := Cl0(Vm,n, Qm,n) and Gm,n := Spin(Vm,n, Qm,n).

4.2.27 Remark. Let (V,Q) be a quadratic space of dimension n ∈ N over a field
K ⊆ C.

a) For every y ∈ Spin(V,Q) we find the K-linear map

ry : Cl0(V,Q) −→ Cl0(V,Q), x 7−→ xy

whose inverse is given by ry−1 . Hence we obtain a group homomorphism

ρ̃ : Spin(V,Q) −→ GL(Cl0(V,Q)), y 7−→ ry
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which turns out to be a faithful irreducible linear representation of Spin(V,Q). Us-
ing the basis E := {eI | I ⊆ {1, . . . , n}, |I| even} of Cl0(V,Q) corresponding to
a normal basis {e1, . . . , en} of (V,Q), we obtain another faithful irreducible linear
representation

ρ : Spin(V,Q)
ρ̃−→ GL(Cl0(V,Q))

ΦE−→ GL2n−1(C),

if ΦE assigns to each automorphism α its transformation matrix DEE(α) correspond-
ing to E.

b) In case that (V,Q) = (Vm,n, Qm,n) for some m,n ∈ N0 we fix a normal basis
{e1, . . . , em+n} of (Vm,n, Qm,n) throughout this chapter, which satisfies

Qm,n(ei) =

{
1 if 1 ≤ i ≤ m,

−1 if m+ 1 ≤ i ≤ m+ n,

so that we obtain a corresponding fixed basis Em,n of C0
m,n over K. Now a) tells us

that we actually fixed a faithful irreducible linear representation

ρm,n : Gm,n
ρ̃m,n−→ GL(C0

m,n)
ΦEm,n−→ GL2m+n−1(C)

and we want to identify Gm,n with its image under ρm,n.

4.2.28 Definition. (Algebraic group and group of R-points)

a) An algebraic group is a subgroup of GLn(C) which is closed in the Zariski topology.
We consider GLn(C) as Zariski closed subset of C(n+1)×(n+1) using the embedding

GLn(C) −→ C(n+1)×(n+1), g 7−→
(
g 0
0 det(g)−1

)
and see that its image can be described as the zero-locus of

S := {Xi,n+1}i=1,...,n ∪ {Xn+1,i}i=1,...,n ∪ {Xn+1,n+1 · det((Xi,j)i,j=1,...,n)− 1}

and hence the coordinate ring of GLn(C) is given by

A := C[{Xi,j}i,j=1,...,n+1]/〈S〉 ∼= C[X1,1, X1,2, . . . , Xn,n, det((Xi,j)i,j=1,...,n)−1]

.

b) We say an algebraic group G ≤ GLn(C) is defined over a subfield K ⊆ C, if the ideal
I(G) := {p ∈ A | p(g) = 0 ∀g ∈ G} is generated by I(G)K := I(G) ∩ AK , where
AK := K[X1,1, X1,2, . . . , Xn,n, det((Xi,j)i,j=1,...,n)−1].

c) Let G ≤ GLn(C) an algebraic group and R ⊆ C a subring. Then we call

G(R) := G ∩GLn(R)

the group of R-points of G.
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4.2.29 Corollary. Let m > 4 and n > 0 natural numbers, K be a number field and v
a discrete valuation on K with corresponding valuation ring Ov in the completion Kv of
K with respect to v. Then

Gm,n(Ov) ∼= Gm−4,n+4(Ov).

Proof. Let m̃ := m − 4, ñ := n + 4 and E := {e1, . . . , em+n} be our fixed basis of the
quadratic space (Vm,n, Qm,n) associated with qm,n over Kv which satisfies

Qm,n(ei) =

{
1 if 1 ≤ i ≤ m,

−1 if m+ 1 ≤ i ≤ m+ n.

By Corollary 4.2.22 we know that there is a normal basis F := {fi}m+n
i=1 of (Vm,n, Qm,n)

with

Qm,n(fi) =

{
1 if 1 ≤ i ≤ m̃,

−1 if m̃+ 1 ≤ i ≤ m̃+ ñ
(6)

and the base change matrix DFE and its inverse DEF have entries in Zp. Note that

the two normal bases E and F give rise to two bases Ẽ, F̃ of C0
m,n and induce two

embeddings

ΦẼ,ΦF̃ : GL(C0
m,n) ↪→ GL2m+n−1(C).

Furthermore the base change matrices DFE and DEF induce base change matrices
DF̃ Ẽ, DẼF̃ ∈ GLm+n(Kv). Using relation (4) and (5) in the proof of Lemma 4.2.24,
the fact that DFE, DEF have entries in Zp and that qm,n, qm̃,ñ have coefficients in Zp, one
sees that DF̃ Ẽ and DẼF̃ actually have entries in Zp as well. Now let

κ : GL2m+n−1(C) −→ GL2m+n−1(C), A 7−→ DF̃ ẼADẼF̃

and observe that κ(GL2m+n−1(Ov)) ⊆ GL2m+n−1(Ov) since DF̃ Ẽ, DẼF̃ ∈ GL2m+n−1(Zp).
Furthermore κ is an automorphism and for ρ̃m,n as in Remark 4.2.27 b), commutativity
of

GL2m+n−1(C)

Gm,n GL(C0
m,n)

GL2m+n−1(C)

ρ̃m,n

Φ
Ẽ

Φ
F̃

κ

tells us that

κ|Gm,n(Ov)
: Gm,n(Ov)

∼−→ ΦF̃ (ρ̃m,n(Gm,n)) ∩GL2m+n−1(Ov)

50



4.2 The L2-Betti numbers in general are no profinite invariant

is an isomorphism. Now let G := {gi}m̃+ñ
i=1 be the fixed basis of (Vm̃,ñ, Qm̃,ñ) which

satisfies

Qm̃,ñ(gi) =

{
1 if 1 ≤ i ≤ m̃,

−1 if m̃+ 1 ≤ i ≤ m̃+ ñ
(7)

and G̃ its corresponding basis on C0
m̃,ñ. By comparing the equations (6) and (7) we can

convince ourselves that

ΦG̃(ρ̃m̃,ñ(Gm̃,ñ)) = ΦF̃ (ρ̃m,n(Gm,n)),

since the matrices obtained by these linear representations are only depending on the
relations f 2

i = Qm,n(fi) and g2
i = Qm̃,ñ(gi) for i = 1, . . . ,m+ n. So

Gm̃,ñ(Ov) = ΦG̃(ρ̃m̃,ñ(Gm̃,ñ)) ∩GL2m+n−1(Ov) = ΦF̃ (ρ̃m,n(Gm,n)) ∩GL2m+n−1(Ov),

which proves the claim.

4.2.30 Remark. Let m,n ∈ N0, K ⊆ C a number field and (Vm,n, Qm,n) its correspond-
ing quadratic space. Then Gm,n ≤ GL2m+n−1(C) is known to be an almost simple and
absolutely simple algebraic group defined over Q.

4.2.31 Definition. (Place)

a) Two absolute values | · |1, | · |2 on a field K are said to be equivalent if there is a real
number s > 0 with |x|1 = |x|s2 for every x ∈ K.

b) The equivalence class of an absolute value | · | on K is called a place on K and it is
called non-archimedean (or finite) if | · | is non-archimedean. Otherwise it is called
archimedean (or infinite).

4.2.32 Remark. Let K ⊆ C be a number field, OK its ring of integers, n ∈ N a
natural number, G ⊆ GLn(K) an algebraic group over K and consider Γ := G(OK).
Besides its profinite topology we can consider the congruence topology on Γ, for which
a fundamental system of neighborhoods of the identity is given by set

M := {Γ(a) | 0 6= aEOK}

of congruence subgroups

Γ(a) := {g ∈ Γ | g ≡ I mod a}

for nonzero ideals a E OK (see section 5 in Chapter 9 of Platonov and Rapinchuk,
1992). They are normal and of finite index in Γ as kernels of the group homomorphism
Φa : Γ −→ GLn(OK/a) obtained by restricting the canonical group homomorphisms
GLn(OK) −→ GLn(OK/a) to Γ. SoM⊆ NΓ and we have

⋂
0 6=aEOK

Γ(a) = I. According

to Humphreys, 2006 (see section 5 in Chapter 16) there is a completion Γ of Γ with
respect to this topology, which is given by

Γ = lim←− 0 6=aEOK
Γ/Γ(a),
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if we endow each Γ/Γ(a) with its discrete topology. Now we have a family of compatible

continuous group homomorphisms Γ̂ = lim←−N∈NΓ
Γ/N −→ Γ/Γ(a) which are all surjective,

so by Corollary 3.1.7 the induced map π : Γ̂ −→ Γ is surjective. The kernel of this map
is called congruence kernel of G and denoted by C(G). Hence we obtain a short exact
sequence

1 −→ C(G) −→ Γ̂ −→ Γ −→ 1.

Now let Γ(OK/a) := Im(Φa) and Γ(ÔK) := lim←− 06=aEOK
Γ(OK/a). Then the maps Φa

induce compatible isomorphisms Γ/Γ(a)
∼−→ Γ(OK/a) and since lim←− is a functor we get

Γ ∼= Γ(ÔK). Using the fact that the profinite completion ÔK := lim←− 06=aEfOK
OK/a of

OK is isomorphic to
∏

v∈V K
f
Ov (see example 1.7 in Koch, 2013), where V K

f denotes the

set of finite places of K and Ov the ring of integers in the completion Kv of K with
respect to v, one checks that Γ(ÔK) ∼=

∏
v∈V K

f
Γ(Ov) and hence we obtain a short exact

sequence

1 −→ C(G) −→ Γ̂ −→
∏
v∈V K

f

Γ(Ov) −→ 1.

In order to proof Theorem 4.2.35 we will need the fact that Gm,n(Ov) is residually
finite, which is a direct consequence of Malcev’s theorem. A proof of it can be found in
Nica, 2013.

4.2.33 Definition. (Linear group)
A group G is called linear if it is isomorphic to a subgroup of GLn(K) for some field K
and some n ∈ N.

4.2.34 Theorem. (Malcev’s theorem)
A finitely generated linear group is residually finite.

4.2.35 Theorem. Let K := Q(
√
d) with d ∈ N square free and OK its ring of integers.

For some fixed natural number n ≥ 6 let

Γ := G1,n(OK) and Λ := G5,n−4(OK).

a) Then there are finite index subgroups Γ0 ≤ Γ and Λ0 ≤ Λ with isomorphic profinite

completions Γ̂0
∼= Λ̂0.

b) We have
b(2)
p (Γ0) 6= 0 ⇐⇒ p = n and n even

and
b(2)
p (Λ0) 6= 0 ⇐⇒ p = 5n− 20 and n even.

Proof. a) Let σ1, σ2 : K ↪→ R be the two distinct embeddings of K into R. Furthermore,
let G1 := Gn,1 and G2 := Gn−4,5 over K together with the fixed representations
ρi : Gi −→ GL2n(K). Note that the embeddings σ1 and σ2 induce embeddings

σ̂i,1, σ̂i,2 : Gi(OK) ↪→ Gi(R)
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for i = 1, 2. Now let us embed diagonally

σ̂1,1 × σ̂1,2 : Γ := G1(OK) −→ G1(R)×G1(R)

and
σ̂2,1 × σ̂2,2 : Λ := G2(OK) −→ G2(R)×G2(R).

By Corollary 4.2.29 we know that G1(Ov) ∼= G2(Ov) for any discrete valuation v on
K with valuation ring Ov in the completion Kv of K with respect to v. So there is
an isomorphism

Φ:
∏
v∈V K

f

G1(Ov)
∼−→

∏
v∈V K

f

G2(Ov)

where V K
f denotes the set of all finite places of K. In Kneser, 1979 it is shown that

the congruence kernel of G2 is trivial and the congruence kernel of G1 is of size 1 or
2. Hence the discussion of Remark 4.2.32 implies that

Λ̂ = Ĝ2(OK) ∼=
∏
v∈V K

f

G2(Ov)

with isomorphism π2 : Λ̂ −→
∏

v∈V K
f
G2(Ov) and Γ̂ fits into a short exact sequence

1 −→ C −→ Γ̂
π1−→

∏
v∈V K

f

G1(Ov) −→ 1

with a finite group C. We remember that the intersection of all normal open sub-
groups of a profinite group is trivial (cf. Theorem 3.2.7), so by finiteness of C we can

find a normal open subgroup of Γ̂ which intersects C trivially and hence injects into∏
v∈V K

f
G1(Ov). As Γ is finitely generated (see Theorem 5.1 in Chapter 5 of Platonov

and Rapinchuk, 1992) and linear, Malcev’s theorem (cf. Theorem 4.2.34) tells us
that Γ is residually finite and by Proposition 3.2.13 the subgroup we found is of the
form Γ0 for some open subgroup Γ0 ≤ Γ. Since Γ0 is open in Γ, Lemma 3.2.19 tells
us that the profinite topology on Γ0 is induced by the profinite topology on Γ and by
Corollary 3.2.18 we conclude that Γ̂0

∼= Γ0. Now let

Ψ := π−1
2 ◦ Φ ◦ π1 : Γ̂ −→ Λ̂.

and consider the subgroup Ψ(Γ0) ≤ Λ̂, which is normal and of finite index by sur-

jectivity of Ψ. Since Γ0 is closed in the compact group Γ̂, it is compact itself and its
image under the continuous map Ψ is compact as well. Therefore Ψ(Γ0) is a compact

subset of the Hausdorff space Λ̂ and hence closed. Together with the fact that it is of
finite index, we can conclude that Ψ(Γ0) is open in Λ̂. So, by the same argument as

before, it is of the form Λ0 for some open subgroup Λ0 ≤ Λ and Λ̂0
∼= Λ0. Hence Ψ|Γ0

induces a continuous group homomorphism Γ̂0 −→ Λ̂0 which has to be open, since
Γ̂0 and Λ̂0 are compact Hausdorff spaces. This proves that Γ̂0 and Λ̂0 are isomorphic
as topological groups and finally the claim.
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b) Note that the embedding σ̂1,1 × σ̂1,2 (resp. σ̂2,1 × σ̂2,2) realises Γ (resp. Λ) as lattice
in the connected semisimple Lie group G1(R)×G1(R) (resp. G2(R)×G2(R)). Since
Γ0 ≤ Γ and Λ0 ≤ Λ are finite index subgroups, we can find Λ0 (resp. Γ0) as lattice in
G1(R)×G1(R) (resp. G2(R)×G2(R)) as well. Hence we can use Lemma 2.3.8 to find
their non-vanishing L2-Betti numbers. The maximal compact subgroup of G1(R) =
G1,n(R) (resp. G2(R) = G5,n−4(R)) is K1 := SO(n) (resp. K2 := SO(5)×SO(n−4)).
So we can calculate

dim((G1(R)×G1(R))/(K1 ×K1)) = dim(G1(R)×G1(R))− dim(K1 ×K1)

= 2 dim(G1(R))− 2 dim(K1)

= 2 dim(SO(n+ 1))− 2 dim(SO(n))

= 2
n(n+ 1)

2
− 2

(n− 1)n

2
= 2n,

dim((G2(R)×G2(R))/(K2 ×K2)) = dim(G2(R)×G2(R))− dim(K2 ×K2)

= 2 dim(G2(R))− 2 dim(K2)

= 2 dim(SO(n+ 1))− 2 dim(SO(5)× SO(n− 4))

= 2
n(n+ 1)

2
− 2

(
4 · 5

2
+

(n− 5)(n− 4)

2

)
= 10n− 40,

and

δ(G1(R)×G1(R)) = rankC(G1(R)×G1(R))− rankC(K1 ×K1)

= 2 rankC(G1(R))− 2 rankC(K1)

= 2 rankC(SO(n+ 1))− 2 rankC(SO(n))

= 2bn+ 1

2
c − 2bn

2
c,

δ(G2(R)×G2(R)) = rankC(G2(R)×G2(R))− rankC(K2 ×K2)

= 2 rankC(G2(R))− 2 rankC(K2)

= 2 rankC(SO(n+ 1))− 2 rankC(SO(5)× SO(n− 4))

= 2bn+ 1

2
c − 2

(
b5

2
c+ bn− 4

2
c
)

= 2bn+ 1

2
c − 2bn

2
c.

Thus δ(G1(R) × G1(R)) = δ(G2(R) × G2(R)) is zero if and only if n is even. Hence
Γ0 has a non-vanishing p-th L2-Betti number if and only if n is even and p = 2n

2
= n,

whereas Λ0 has a non-vanishing p-th L2-Betti number if and only if n is even and
p = 10n−40

2
= 5n− 20.
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Now the main theorem of this section (cf. Theorem 1.0.2) is a direct consequence of
the previous Theorem.
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