Cohomological Induction and uniform measure equivalence

  • Date:

    07.11.2019

  • Speaker:

    Thomas Gotfredsen

  • Time:

    15:45

  • Abstract: In the beginning of the century it has been shown by Shalom and Sauer that for discrete groups, group cohomology interacts well with the notion of quasi-isometry, and, for amenable groups, coincides with the notion of uniform measure equivalence. Bader, Furman and Sauer have since then defined a notion for measure equivalence in the locally compact case, and it has been proven by Koivisto, Kyed and Raum that their notion of uniform measure equivalence coincides with quasi-isometry if the groups in question are amenable.
    In my talk, I will present an induction isomorphism arising from a uniform measure equivalence of locally compact second countable unimodular groups, generalising the result of Sauer, showing that their real cohomology rings coincide. I will further show, how this can be applied to provide new insights into the quasi-isometry classification problem for low dimensional nilpotent Lie groups. This is joint work with David Kyed.

  • Place:

    2.058 (20.30)